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• Develop an RGB-image contrast in-
tensificator (CI) immediately hand-
ing expert linguistic rule bases, Hint .

• Define pixelwise-defined operators
influencing on the CI-performance to
control the balance between global
and local image features.

• Establish a HA-formalism to soundly
converse such linguistic rules to S-
function to construct a desired CI .

• Apply for the first time standard FCM,
FCfz , to entire RGB-images to reveal
regional image features.

• The proposed method - an integra-
tion of Hint using a new surrounding
luminance operator and FCfz - is run
on 27 RGB-images to show its effec-
tiveness.
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a b s t r a c t

This study follows the direct approach to image contrast enhancement, which changes the image contrast
at each its pixel and is more effective than the indirect approach that deals with image histograms.
However, there are only few studies following the direct approach because, by its nature, it is very
complex. Additionally, it is difficult to develop an effective method since it is required to keep a balance
in maintaining local and global image features while changing the contrast at each individual pixel.
Moreover, raw images obtained frommany sources randomly influenced bymany external factors can be
considered as fuzzy uncertain data. In this context, we propose a novel method to apply and immediately
handle expert fuzzy linguistic knowledge of image contrast enhancement to simulate human capability
in using natural language. The formalism developed in the study is based on hedge algebras considered as
a theory, which can immediately handle linguistic words of variables. This allows the proposedmethod to
produce an image contrast intensificator from a given expert linguistic rule base. A technique to preserve
global as well as local image features is proposed based on a fuzzy clusteringmethod, which is applied for
the first time in this field to reveal region image features of raw images. The projections of the obtained
clusters on each channel are suitably aggregated to produce a new channel image considered as input of
the pixelwise defined operators proposed in this study. Many experiments are performed to demonstrate
the effect of the proposed method versus the counterparts considered.
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1. Introduction

Images provide necessary information in various practical
fields; however, raw images usually are of low quality, because
when capturing them, they are usually affected by many random
factors, for instance, the equipment to capture the images and
lighted condition or real-life condition. Therefore, in general, they
suffer from poor contrast and noise, even occlusion, and hence,
they hide image details that may involve meaningful and use-
ful information. To enhance the image quality, image contrast
enhancement (ICE) plays an important role in medical images
[1–4], biomedical images [5–7], satellite images [8–14], micro-
scopic images [15–17], human/machine vision [18,19], and even
real-life photographs. Because, in practice, many factors affecting
the quality of captured images are random or uncertain in nature,
they make images and their details fuzzy. Thus, it is required to
develop a soft formalism to handle their fuzziness. This leads to
apply the fuzzy set theory to the field of image processing and
analysis [20–35].

ICE techniques attract much attention in the image processing
community to improve the image interpretability or visualisation
or to bring out useful information hidden in image details. Many
contrast enhancement algorithms (most of them rely on the in-
direct approach that changes the histogram without defining any
specific contrast measure), can be found in the literature, e.g. those
based on changing the contrast measurement [36,37], changing
the contrast using square, log, or exponential functions [38], us-
ing the fuzzy entropy principle or, as aforementioned, using the
fuzzy set theory. Many other techniques for image enhancement
are exploited, e.g. global histogram equalisation [39], logarith-
mic transform histogram shifting and histogram-based image en-
hancement [40], dynamic histogram equalisation technique [41],
multi-histogram normalisation method [42], and discrete cosine
transform [43]. However, only few studies follow the direct ap-
proach that modify the image contrast at each pixel of the image,
e.g. [21,22,38,44,45]. In [38,44], it is proved that the direct method
offers techniques that can produce more effective results.

The uncertainty-based approaches exploit relatively different
philosophy and formalisms of the fuzzy set theory [22,32,33]. In
these approaches, images are represented as two-dimension fuzzy
sets to which fuzzy set-based methods are applied to utilise fuzzy
set formalism to handle uncertainty, including the use of type I
fuzzy sets [21,22,27,32,33] or type II fuzzy sets, and fuzzy inference
methods, e.g. [10]. These methods are very flexible and are espe-
cially capable of simulating human ability in handling linguistic
knowledge bases (LKBs), particularly in reasoning based on fuzzy
set representations of LKBs. Most methods of the aforementioned
studies on the indirect approach are executed based on a fuzzy
formalism, but not many of them developed fuzzy inference tech-
niques using fuzzy rule bases, e.g. [28,35].

As mentioned above, two studies by Cheng and Xu [21,22]
follow the direct approach to modify the contrast at each image
pixel by applying a contrast measure pixelwise defined based on
the difference between the luminance at each image point and one
of its prespecified surrounding region. These two studies apply a
fuzzy set-based formalism inwhich the fuzziness of the contrast at
each image point is represented by an S function with parameters
defined by utilising certain local image features. Based on this,
they propose new intensification contrast enhancements to mod-
ify the S-function shapes, which are shown to be more effective
and efficient than the counterpart methods based on the indirect
approach. Note that as commented by Hanmandlu and Jha [46],
the application of a colour image enhancement on the RGB colour
model using a histogram equalisation technique is inappropriate
for the human visual system because it fails when applied to the
three components (R, G, B) of a degraded colour image by losing its
original colour composition.

Although the motivation for applying fuzzy rule bases, whose
fuzzy sets are assigned to linguistic labels, and approximate rea-
soning methods is to simulate human capabilities in immedi-
ately manipulating their own linguistic words, in nature, they
have no prescribed formalism to deal immediately with words
of variables. Hedge algebras (HAs) are mathematical models of
word domains of variables developed based on inherent word
semantics. They provide sound formalisms to immediately handle
words [47,48] and their computational (compt.-) semantics, in
which the inherent qualitative semantics of words does determine
their compt.-semantics [49–52]. It is shown that they can be ap-
plied to solve many practical problems effectively in distinct areas
[49–51,53–59].

Because human beings are familiar with the use of their own
words to render their experience and knowledge to solve practical
problems, the study aims to propose a novel method of utilising
this human expertise in using their own linguistic knowledge to
change the image contrast. The method has three main distin-
guished features:

- Ability to utilise the distinctive capability of a human expert
in representing his/her experience to enhance the image con-
trast in terms of his/her own linguistic rules, called linguistic
model, in which appear words of the luminance variable such
very dark or slightly darker, whose hedges play a specific role
in expressing his/her experience. It is interesting that lin-
guistic models of this problem always describe increasingly
monotonic linguistic functions that can be utilised to produce
S functions to enhance the image contrast.

- Applying the semantically quantifying mappings of word do-
mains of the luminance variables to produce a numeric S
function at each image pixel defined in a two-dimensional
luminance space from the expert linguistic model, while pre-
serving its monotonicity. This S function can be easily modi-
fied by changing only few fuzziness parameters of the lumi-
nance variable. Some characteristics of the input images are
also utilised to ensure suitability of the desired S function.

- Two main techniques dealing with multichannels of images
are developed to achieve a suitable balance between global
image features and local ones. The first one is to deal with the
image operators proposed to act on multichannel images but
are pixelwise defined in each channel. The other is to apply for
the first time a fuzzy clustering method (FCM) in this field to
make use of the global image features revealed by the FCM. It
is first applied to cluster the whole raw multichannel image,
and then, the projections of the obtained clusters on each
channel are aggregated by an appropriate linear transforma-
tion to forman input image of the above-mentionedproposed
operators.

This paper is organised as follows: In Section 2, some necessary
knowledge of the direct approach to ICE and HAs to examine
the study are presented. Section 3 is devoted to establishing a
formalised foundation based on the theory of HAs for developing
the image contrast intensificator (CI). The proposed method of
image contrast intensification with a reasoningmethod developed
based on an HA formalism is presented in Section 4. A comparative
study of the proposedmethodwith its counterparts based onmany
experiments is given in Section 5. Conclusions are provided in
Section 6.

2. Background

2.1. Necessary knowledge of HAs for modelling the semantics of lin-
guistic rules

Because human beings are familiar with their own linguistic
words to render their experience or cognition or doing reasoning in
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Table 1
Relative sign of a hedge in a row with respect to a hedge in a column.
sign (h, k) E V R L

E + + − +

V + + − +

R − − + −

L − − + −

terms ofwords and if-then rules to solve practical problems, in this
study,wewill show thatHAs and their quantification theory enable
us to make use of these human capabilities in the field of ICE based
on an appropriate formalism that is capable of dealing immediately
with expert linguistic rules. Note that there is no formal basis in
the fuzzy set framework to immediately handle human words of
variables and their inherent semantics, and in addition, the word
domains are still not formalised.

HAs, introduced in [47,48] establish an algebraic approach to
formalise word domains of variables based on the inherent order-
based semantics of their words. This viewpoint is also supported
by observation that the comparability between words in a word
domain is a consequence of the demand for decision-making activ-
ities in human daily life, inwhich pairwise comparisons of decision
alternatives in terms of linguistics are crucial. Consequently, there
are comparability elements in human languages. For example, for
every hedge h, say very (V ) of the luminance variable X, the words
very bright and bright, for example, are always comparable. There-
fore, as the luminance space is linear, the word domain Dom(X)
may be assumed to be a linearly ordered set and can be formalised
as an abstract algebra, denoted byAX= (Dom(X),G, C,H,≤), where
G = {dark, bright} is the set of atomic (primary) terms considered
as the generators of AX; C is the set of constants C = {0, W, 1},
which are, respectively, the least, neutral, and greatest words of
Dom(X); H = H−

∪ H+ is the set of hedges of X, regarded as unary
operations, where H− (or H+) is the set of negative (or positive)
hedges, e.g. H−

= {R} and H+
= {V }; and ≤ is the semantic order

relation (SOR). Syntactically, Dom(X) is the set of all strings in the
form hn . . . h1c, c ∈ G and hi’s ∈ H , of X.

2.1.1. Description of HA formalisation
In the HA approach to word semantics, the word domain of

every X is formalised as an order-based structure, AX = (Dom(X),
G, C, H, ≤), whose axioms are certain of the following discovered
properties of words and hedges of X formulated in terms of SOR
≤ [47,60,61]:

-Words ofX have its own ‘algebraic’ signs computed as follows.
For atom words, conventionally, we have

(i) sign(c−) = −1 and sign(c+) = +1;
(ii) For any hedge h, sign(h) = +1 iff h ∈ H+ or hc+

≥ c+ and
sign(h) = −1 iff h ∈ H− or hc+

≤ c+;
(iii) The relative sign of h with respect to k, denoted by sign(h,

k), is computed by sign(h, k) = −1 iff (∃c ∈ G)(kc ≤ c ⇒ kc ≤ hkc)
and sign(h, k) = +1 iff (∃c ∈ G)(kc ≤ c ⇒ hkc ≤ kc). See Table 1 for
illustration.

(iv) The sign of x = hn . . . h1c is defined by sign(x) = sign(hn,
hn−1) . . . sign(h1)sign(c) ∈ {−1, +1}. Then, we have sign(hx) =

−1 leading to hx ≤ x, and sign(hx) = +1 leading to x ≤ hx.
For example, sign(VR_dark) = sign(V,R)sign(R) × sign(dark) = −1,
which implies that VR_dark ≤ R_dark.

- For every h∈H and everyword x∈Dom(X), we have either x≤

hx or x≥ hx, and by the functionality of hedges, theword hx inherits
the semantics of its parent x, called hedge inheritance, which can
be formalised as follows: hx ≤ kx ⇒ H(hx) ≤ H(kx), ∀h, k, where
H(z) = {σ z : σ = hn . . . h1 ∈ H*, ∅ ∈ H*}, which states that any
strings of hedges σ and σ ’ applying to hx and kx cannot change the
direction of hx ≤ kx, i.e. we still have σhx ≤ σ ’kx. Thus, H(x) can be

considered as a fuzziness model of x. The set {H(x): x ∈ Dom(X)} can
be arranged as amultilevel structure given in Part 1, Fig. 1, inwhich
the H(x)’s on the same level, whose x’s have the same length, are
linearly ordered.

2.1.2. Key compt.-semantic aspects of the words of variable domains
(see [61,62])

The quantification of anyAX can be developed under the princi-
ple that the inherent qualitative semantics of thewords ofX should
formally determine their respective compt.-semantics. Clearly, the
word semantics is a complex and inexact concept, while the se-
mantics of compt.-quantities, such as numeric values and intervals,
are much simpler ones. Thus, to adequately and accurately repre-
sent the word semantics in terms of compt.-objects, it is required
to use different types of compt.-objects, each of which expresses
an aspect of the word semantics as follows:

-Numeric semantics ofwords. Amapping f :X → [0, 1],where [0,
1] is the normalised universe ofX, is said to be a numeric semantics
interpretation if it is an order isomorphism, whose image f (X) is
dense in [0, 1]. It is called a semantically quantifyingmapping (SQM)
and, by its nature, its values can be interpreted as the numeric
semantics of the words.

- Interval semantics and fuzziness measure of the words of X. An
SQM f canmap each H(x) to a subinterval of [0, 1] which is the clo-
sure of the set f (H(x)) and denoted by ℑ(x) = [f (H(x))], as depicted
in Fig. 1, and called the fuzziness interval or an interval semantics
of x. Its length is called fuzziness measure of x and denoted by
fm(x). Therefore, f transforms the structure of H(x)’s to a compt.-
structure of the interval semantics of words, as shown in Part 2 of
Fig. 1. It offers many useful compt.-semantic properties of words.
For instance, putting α =

∑
h∈H−

fm(hx)
fm(x) and β =

∑
h∈H+

fm(hx)
fm(x) ,

from the structure exposed in Fig. 1, it follows that∑
h∈H

fm (hx) = fm(x) and
∑
h∈H

µ(h) = α + β = 1 (1)

where we adopt the hypothesis that for all j, the fraction fm(hjx)
fm(x) is

independent of a particular x. It is denoted by µ(hj) and called the
effect or the fuzziness measure of hj. Thus, we have

fm(c−) + fm(c+) = 1 (2)

fm(hx) = µ(h)fm(x), for all x and h (3)

In the HA approach, the conditions (1) to (3) can be considered
as the axioms to define fm, and therefore, it is called the fuzziness
measure of the whole variable X. This shows that the interval
semantics and the SQM values of all words of X can be completely
computed when the quantities fm(c−), fm(c+), and µ(hj)’s, called
fuzziness parameters of X, are known.

Example 1. Assume that the syntactic semantics of current inten-
sity variable I, whose universe is [0, 10] in amperes, is defined by
the sets G = {s (small), l (large)}, H−

= {L, R}, and H+
= {V, E},

whose relative signs are given in Table 1. The compt.-semantics
of its words can be computed by providing the numeric values of
the independent fuzziness parameters as follows: fm(s)= 0.6,µ(L)
= 0.15, µ(R) = 0.3, and µ(V ) = 0.35. Then, the aforementioned
quantitative semantics of any word of the variable I can be easily
computed. For example, given a word x = RVs,

◦ The fuzziness measure fm(RVs) is calculated as follows:

fm(x) = µ(R) · µ(V ) · fm(s) = 0.3×0.35×0.6 = 0.063

◦ Calculate its fuzziness interval, ℑ(RVs). Because |ℑ(RVs)| =
0.063, it is sufficient to calculate the left-point(ℑ(RVs)). From Fig. 2,
we infer that ℑ(s) = ℑ(Es) ∪ ℑ(Vs) ∪ ℑ(Rs) ∪ ℑ(Ls) and ℑ(Vs) =
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Fig. 1. Multilevel semantic structure of Dom(X) and corresponding multilevel structure of fuzziness intervals of its words.

Fig. 2. A piece substructure of fuzziness intervals of some words included in ℑ(s).

ℑ(EVs)∪ ℑ(VVs)∪ ℑ(RVs)∪ ℑ(LVs), whose subintervals are ordered
from left to right. Thus, left-point(ℑ(RVs)) = left-point (ℑ(Vs)) +
|ℑ(EVs)| + |ℑ(VVs)| = |ℑ(Es)| + |ℑ(EVs)| + |ℑ(VVs)| = (µ(E) +
µ(E)µ(V ) + µ(V )2)fm(s) = (0.2 + 0.2 × 0.35 + (0.35)2) × 0.6 =

0.2355. Thus, on the universe [0, 10] in amperes, ℑ(RVs) = [2.355,
2.355 + 10 × |ℑ(RVs)|] = [2.355, 2.985].

-Methods of computing numeric semantics of words. Assume that
AX and its fuzziness parameter values are given. There are two
ways of calculating the numeric semantics or f values:

(A) Calculate the SQM values of words immediately based on
the fuzziness interval structure given in Fig. 1. For a given word x,
it is observed from Fig. 1 or 2 that f (x) is just the common value of
ℑ(h−1x) and ℑ(h+1x) of ℑ(x), where h−1 = R, h+1 = V, noting that
ℑ(h+1x) is on the right of f (x), if sign(h+1x) = +1, or on the left of
f (x), if sign(h+1x) = −1. Thus, f (x) is calculated as follows:

(i) Calculate and locate the fuzziness intervals ℑ(h−1x) and
ℑ(h+1x) in [0, 1];

(ii) Then, f (x) ={
left_point (ℑ (x)) + β |ℑ (x)| if sign (h+1x) = −1

left_point (ℑ (x)) + α |ℑ (x)| if sign (h+1x) = +1
(4)

(B) Recursive formula to compute f (x). As f (x) dividesℑ(x) in the
proportion β : α (or, α : β) if sign(hpx) = −1 (or, sign(hpx) = +1),
the recursive formula is established as follows [62]:

(SQM1) f (W ) = fm(c−), f (c−) = βfm(c−), f (c+)= f (W )+αfm(c+);

(SQM2) f
(
hjx

)
= f (x) + sign(hjx)

⎧⎨⎩
j∑

i=sign(j)

fm(hix) − ϑ
(
hjx

)
fm(hjx)

⎫⎬⎭ (5)

where ϑ
(
hjx

)
= 0.5

[
1 + sign

(
hjx

)
sign

(
hphjx

)
(β − α)

]
∈ {α, β},

for ∀j ̸= 0 and −q ≤ j ≤ p.
It is worth emphasising that although the numeric semantics of

the words are crisp values, they are defined in the context of the
fuzziness of words by giving the fuzziness parameters of X. That
is, they still convey the fuzziness of words of X. Moreover, it is
important that these quantitative quantities of X are defined in the
context of the entire X.

Example 2. This example aims to illustrate how one can compute
the compt.-semantics of a variable, say the luminance variableL of
an image.

Fig. 3. Position of ℑ(LVc+).

Task 1. Determine the syntax semantics of L to produce its word
domain appropriate to a given application. Because every word of
the variable is a string generated from an atom c ∈ {c−, c+} by
hedges in the set H of L, its semantics depends strongly on how
many and which hedges of L the expert expects to be appropriate
to his/her domain application. For simplicity, assume that they are
two hedges Very (V ) and Little (L). Then, Dom(L) is syntactically
determined.

Task 2. Determine the compt.-semantics of the words of L. To
calculate the above quantitative characteristics of all words of
L instead of designing a fuzzy set of each individual word, the
expert needs only to assign intended numeric values tomerely few
independent fuzziness parameters of L. Applying (1) to (5), all the
compt.-semantics of any words of L can always be calculated.

For example, compute the compt.-semantics of x = LVbright
with fm(c−)= 0.45 andµ(V )= 0.55 using themethod described in
point (A). Clearly, β = µ(V ) = 0.55, α = µ(L) = 1− µ(V ) = 0.45.
Then, we locate the fuzziness interval ℑ(x) as follows: By (3), we
have, |ℑ(x)| = fm(LVc+) = µ(L)·µ(V )·fm(c+) = (1 − 0.55) ×0.55×
(1− 0.45)= 0.136125. Referring to Fig. 3, left-point(ℑ(LVc+)) = left-
point(ℑ(Vc+)) = 1 − |ℑ(Vc+)| = 1− µ(V )·fm(c+) = 1− 0.3025
= 0.6975. To compute f (LVc+), from Table 1, we have sign(VLVc+)
= sign(V, L)·sign(L, V )·sign(V )·sign(c+) = (+1)(−1)(+1)(+1) = −1.
Therefore, by (4), f (LVc+) = 0.6975 + β|ℑ(LVc+)| = 0.6975 + 0.55
×0.136125 ≈ 0.772369.

Now, the actual luminance of x is 0.772369 × 255 ≈ 196.95 ∈

[0, 255].

2.2. Semantics of LKBs and their ability to describe ICE

To simulate human capabilities in handlingwords immediately,
the proposed method permits an expert to express his/her desired
ICE of a given raw image in termsof linguistic rules based onhis/her
experience that form an LKB. We will show that although an LKB
used in the experiment section is still very simple, it can already
show its considerable effect. Assume that the LKB LB given by the
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expert to represent a relation between the luminance variable X

of an input image i with domain [Li,min, Li,max] and the luminance
variable Y of his/her desired output i’ with domain [Li′,min, Li′,max]
consists of n rules:

(rk) IF X is xk THEN Y is yk, for k = 1, . . ., n (6)

where xk and yk are words of X and Y , respectively. Similar to that
in fuzzy approaches, in the HA approach, every reasoning method
working on LB can produce a curve f’: [Li,min, Li,max] → [Li′,min,
Li′,max]. Because LB given by an expert describes linguistically a
change in image luminance to enhance the image contrast of i, f’(i)
represents an output image i’ that he/she expects, when applying
a suitable reasoning method. In this study, the reasoning method
is constructed as follows:

• Construct appropriate HAs AX and AY of variables X and Y
by selecting their suitable hedges (maybe one positive hedge
and one negative hedge, for simplicity) and determine their
independent fuzziness parameter values based on calculating
certain local physical features of i.

• Compute the SQM values of the words appearing in LB using
the determined fuzziness parameter values of X and Y . Then,
the compt.-semantics of LB is represented by a grid of n
points in the Cartesian space [0, 1]2, which describes a curve
f’ running through these grid points, where [Li,min, Li,max] and
[Li′ ,min, Li′ ,max] are both normalised into [0, 1].

• Construct an interpolationmethod to calculate approximately
the curve f’ so that it preserves the order-based semantics of
LB. This requirement is essential because the nature of ICE
implies that LB is always increasingly monotonic.

We interpret the reasoning method applied in the study to be
proper because it is developed based on a sound approach to the
word semantics, as previously discussed, and the numeric interpo-
lation method is constructed to preserve the monotonicity of LB.

3. HA-based formal basis for developing image contrast inten-
sification methods

In this section, we propose a formal basis for developing meth-
ods of enhancing the image quality by intensifying the image
contrast at every image pixel using expert experiences expressed
in terms of his/her LKB. In the HA approach, every LKB consisting of
n linguistic rules with m input variables and one output variable,
whose word domains are modelled by their respective HAs, can
be viewed as representing a linguistic function in the Cartesian
product of (m + 1) HAs. Using SQMs presented in Section 2, one
can transform this LKB representing expert domain experience
into a grid of n points that approximately represents a function
in [0, 1]m+1. This formalism suggests that every method of image
contrast intensification can be considered as an operator CI, which
is pixelwise defined when acting on an image i. As such, a CI is
practically complex, and it should be analysed as a combination
of specific component operators in order to develop effective CIs
easily. Thus, we discuss first the component operators of a general
CI and thenwe construct a CI which is able to dealwith expert LKBs
based on an HA-based formalism called HA-based CI and denoted
by Hint.

3.1. Analysis of image CI based on contrast enhancement

As mentioned previously, we will deal with images of mul-
tichannels, which are closely related to each other. A contrast
enhancement method of the direct approach applied to an image
can be considered as an ICE operator E acting on an κ-channel
image i represented as an array {pi,j : (i, j)∈M ×N},where the pixel
pij is represented as a mapping vector i(pij) = (i1(pij), . . . , iκ (pij)) =

lij, where ik : {pi,j : (i, j) ∈ M × N } → [Lk,min, Lk,max], i.e. lk,ij = iκ (pij)
∈ [Lk,min, Lk,max], for k = 1 to κ , are mappings. For simplicity,
hereafter, it should be noted that every multichannel image i is
identical with this vector mapping i.

We propose a new method of ICE consisting of few steps per-
formedby certain image operators having specific properties, some
of which deal with images as a whole and the remaining ones
deal with individual channels. In this way, we may assess the
performance of each operator to improve the image quality. First,
we consider an arbitrary kth channel of an image i, denoted also by
i, for simplicity, when no confusion occurs. The problem of the ICE
of i (the kth channel) is to find an ICE operator E that can transform
the image i into E(i) of as high quality as possible with respect
to certain criteria. For convenience, every ICE operator based on
a fuzzy approach applying to each image channel is decomposed
into the following pixelwise-defined operators:

- Fuzzificator F. For a given increasingly monotonic function f
: [Lmin, Lmax] → IL = [0, 1], whose inverse function is f −1, the
fuzzificator defined by f is a mapping F f : i = {li,j : (i, j) ∈ M × N}
→ F f (i) = {f (li,j) : (i, j)∈M ×N }, for every image i. Therefore, given
an i, F f (i) is a fuzzy set representing the fuzziness of i restricted to
the channel in question defined by means of the given f. Thus, F f
is a factor that can actually change the luminance to enhance the
image contrast.

- Surrounding luminance operator S. This operator determines
a surrounding luminance in a given window W of every pixel of
F f (i), S : F f (i) → S(F f (i)) = {S(f (li,j),W ij) ∈ IL = [0,1] : (i, j) ∈ M ×

N}, i.e. for every pixel pij, S defines a surrounding luminance bij of
f (li,j). For the case of f being a linear transformation to normalise
the reference domain into [0, 1], S is simply written as S: i → S (i)
= {S(li,j,W ij) ∈ IL : (i, j) ∈ M × N}. For illustration, the new concept
of homogeneity HOij defined and calculated in [21] using certain
local features of i can be considered as S.

- Contrast measure operator Cc,b. This operator aims to compute
a contrast measure at a pixel p of F f (i) with respect to a given
surrounding luminance b of p. Given a (contrast measurement)
function c(b, l) ∈ Ic = [0, 1], b, l ∈ IL = [0, 1], satisfying the
condition that for any b ∈ IL, c(b, b) = 0 and the function c(b, .) is
continuous and piecewise strictly monotonic in each interval of [0,
b] and [b, 1]. To avoid possible confusion, the notation Ic is used
to highlight that although its values are also in the (normalised)
luminance domain [0, 1], they indicate the contrast measure of
the image pixels but not the luminance values. There are some
definitions of the contrastmeasure of image pixels in the literature.
In this study, we apply the contrast measure used in [21]:

c (b, l) =
|l − b|
|l + b|

∈ Ic = [0, 1] (7)

Set c(S(i)) = {c(bij, f (li,j)) : (i, j) ∈ M × N}, where bij = S(lij,W ij).
Then, given c, the contrast measure operator is defined pixel-

wise as follows:
Cc : i → {c(bij, f (li,j)) : (i, j) ∈ M × N}, i.e. Cc(i) = c(S(i))
For simplicity, fix a pixel pij = p and put b = bij and l = f (lij), by

(7); we have Cc,b(l)= c(b, l)∈ Ic, which defines a function Cc,b(l) of
the luminance at p. Because Cc,b is invertible in each interval of [0,
b] and [b, 1], we may determine the inverse C−1

c,b of Cc,b, where C−1
c,b

: IL = [0, 1] → Ic. Thus, Cc,b(l) is the contrast measurement of the
image at pixel p and, for a given contrast degree s ∈ Ic at a pixel p,
C−1
c,b (s)is the luminance at p having the contrast degree s.
- Contrast intensificator CIc and contrast enhancement operator

CE with a given contrast measurement c. The operator CIc, which
intensifies the contrast of i, is also pixelwise defined using the
operator S to compute the surrounding luminance of each pixel.
Let CI: IS × IL × Ic → IL be any function, where, similar to Ic,
IS is used instead of IL to indicate its values to be the surrounding
luminance values of its pixels. For any b ∈ IS = [0, 1] and c ∈ Ic =
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[0, 1], the function CIb,c : IL → IL defined by CIb,c(l) = CI(l, b, c) is
said to be a contrast intensification function with respect to b, if it
satisfies the following condition for every l ∈ [0, 1]:⎧⎨⎩
CIb,c (l) = b, for l = b
CIb,c (l) ≤ l, for 0 ≤ l < b
CIb,c (l) ≥ l, for b < l ≤ 1

(8)

In the direct approach, because CI is pixelwise defined, the
notation CIb,c(l) is useful to change the luminance l at every pixel
based on the surrounding value b and the contrast value c com-
puted using the given c. The function of CIb,c is to change the
luminance l at a pixel into a luminance l’ = CIb,c(l) so that the
new contrast degree expected by an expert can be expressed by
a contrast enhancement operator, denoted by CE, which is defined
as follows:

◦ Contrast enhancement operator CE. The operator CE : Ic → Ic,
which enhances the contrast measurement of an image pixel, is
characterised by the following condition:

CE(c) ≥ c, for all c ∈ Ic (9)

Thus, while CI is the operator that changes the luminance at
each pixel of an image in such a way that its contrast is enhanced,
the functionality of CE is to change only the contrast of every
image pixel. The relation between CIc and CE is expressed by the
following constraint:

c(b, CIb,c(l)) = CE(CIb,c(l)) ≥ c (10)

Then, the operator CIb,c , which is defined based on the contrast
measure operator Cc,b and a contrast enhancement operator CE,
can be represented by a combination of three operators Cc,b : IL
→ Ic, CE : Ic → Ic, and C−1

c,b(s) : Ic → IL:

CIb,c (l) = C−1
c,b

◦
CE◦Cc,b or CIb,c (l) = C−1

c,b(CE(Cc,b (l))),

for l ∈ IL = [0, 1] (11)

3.2. Construction of HA-based CI able to deal with expert LKBs

The main specific feature of the proposed method of the con-
trast intensification is its ability to deal with LKBs formulated by
experts to change the contrast of a total given image (see for
instance (12)), where X is the variable of the luminance of an
original image, and Y is the variable of the luminance of its output
image. As human beings are excellent at recognising reality in
terms of their natural language, it seems to be very useful and
practical to utilise experts’ experience and knowledge of image
quality enhancement. Thus, instead of trying to construct specific
functions, e.g. power functions, as examined in [21,22], based on
the researcher intuition, wemaymake use of the numeric function
described by an LKB of an expert, e.g.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(r1) If X is 0, then Y is 0
(r2) If X is c−, then Y is very c−

(r3) If X is W , then Y is W
(r4) If X is c+, then Y is very c+

(r5) If X is 1, then Y is 1

(12)

In this section, we present howone can produce an S function to
intensify the image contrast of a given image from a given expert
LKB given in (12).

3.2.1. Definition of HA- based contrast intensification Hint
Let AX = (X, GX, HX, ≤) and AY = (Y, GY , HY , ≤) be HAs

determined for the respective variables X and Y (at a given image
pixel). Assume syntactically that GX = GY = {c−, c+}, where
c−

= low and c+ = high, HX = HY = {little, very}; however, their

quantitative semantics are different as they depend on their local
image features. The independent fuzziness parameters of X are
denoted by fmX (c−) = θX and µ(very) = βX and the ones of Y are
denoted by fmY (c−) = fmX(c−) = θX and µ(very) = βY . Let vX and
vY be the SQMs of the respective variables X and Y determined by
only giving their fuzziness parameter values; the rules in (12) are
then transformed into five points in the space [0, 1]2:

(vX (0) , vY (0)) ,
(
vX

(
c−

)
, vY

(
very_c−

))
, (vX (W ) , vY (W )) ,

(vX(c+), vY (very_c+)) and (vX(1), vY (1))

}
(13)

As vX and vY preserve the order of their words, we have vU (c−)
> vU (very_c−) and vU (c+) < vU (very_ c+), because c− > very_c− and
c+ < very_c+, where the subscript U stands for either X or Y .

These inequalities ensure that (13) approximately defines an S
function.

Definition 1 (OperatorHint). LetHAsAX andAY and their semantic
fuzziness parameters of the respective variables X and Y be de-
scribed as above, noting that vX(W ) = vY (W ) = fmX(c–) = θ .
Then, an HA CI, denoted by Hint, described linguistically by (12), is
understood as any continuous function that runs through the grid
points given in (13), and it is also a contrast intensification with
respect to b = vX(W ) = θ , i.e. it is a CIθ .

3.2.2. Operator Hint determined by a given LKB and by a non-linear
interpolation

To determine an appropriate CI defined by the LKB given in
(12), by Definition 1, in general, we can apply any interpolation
method (INTMd) to construct Hint, which is a function running
through five points given in (13). In this study, we apply a non-
linear interpolation method to produce Hint so that the contrast
measurement of the luminance l’ changed byHint from the current
luminance l < b at a pixel, whose contrast measurement is c l =

Cc,b(l), is equal to Cc,b(l’) = (c l)τ , for some exponent τ . Hence, l′ =

Hint (l) = b 1−(cl)τ

1+(cl)τ
.

To find an explicit non-linear expression of Hint, we need the
following lemma to show that Hint enhances the image contrast
better than a linear transformation, T = τ l, for l < b, noting that the
quantities

( 1−a
1+a

)τ
and 1−τa

1+τa in the lemma are related to the image
contrast measurements changed by Hint and T, respectively. The
lemma will be applied to show that the image contrast changed
by Hint is greater than the one changed by the method proposed
in [21].

Lemma 1. For ∀ a ∈ (0, 1) and ∀τ ∈ (0, 1), we always have
(i)

( 1−a
1+a

)τ
< 1−τa

1+τa
(ii) For ∀ a ∈ (0, 1) and ∀τ ∈ (0, 1), we have
(a) There exists γ = γ (a, τ ) ∈ (0, 1) such that

( 1−a
1+a

)γ
=

1−τa
1+τa and

γ = γ (a, τ ) < τ

(b)
( 1−l
1+l

)γ
< 1−τ l

1+τ l , for all l such that a < l ≤ 1, and
1−τ l
1+τ l <

( 1−l
1+l

)γ
<

1−γ l
1+γ l , for all l such that 0 < l < a.

Proof. See Appendix A.
To construct a suitable Hint, we introduce a parameter m that

satisfies the condition,

m =
v2Y (very_low)

vX(low)
=

β2
Y

βX

(14)

to control the degree of the contrast intensification defined by the
LKB in (12), where the second equality in (14) is deduced from (5),
and hence, βY =

√
mβX. Because the order-based structure of

every HA of X is symmetric toW [48,60] in the sense that for every
string of hedges σ = hk . . . h1, hj ∈H, σ cϵ

≤W iff σ c−ϵ
≥W, where
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ϵ,− ϵ ∈ {–, +}; then, for any function φ(fm(c−ϵ), βX) defined by the
fuzziness parameters of X, we have

vX(σ c−ϵ) = φ(fm(c−ϵ), βX) iff vX(σ cϵ) = 1−φ(1−fm(c−ϵ), βX)
(15)

For instance, by (5), we have vX(Vc−) = β2
Y fm(c−). By (15), it

implies that vX(Vc+) = 1 − β2
Y (1 − fm(c−)), which is just the SQM

value of the word Vc+ computed by (5). This suggests us to define
a concept of a θ-sym function (θ-sym : means symmetric to θ ) with
parameter θ = fm(c−) as follows: Φ(l, θ ) : [0, 1] → [0, θ ] is said to
be θ-symmetric, provided that, for ∀l ∈ [θ , 1], Φ(l, θ ) = 1 − Φ(1 −

l, 1 − θ ), and hence, for ∀l ∈ [0, θ ], we have Φ(l, θ ) = 1 − Φ(1 − l,
1 − θ ). Put θ = 1 − θ and l = 1 − l, we have the following θ-sym
rule, Rθ , for any θ-sym function Φ(l, θ ):

Φ[0,θ ](l, θ ) = b, for l ∈ [0, θ]⇔Φ[θ,1](l, θ ) = Rθ (Φ[0,θ ](l, θ )) = 1−b,

for l ∈ [θ, 1] (16)

It can be verified that SQMs of HAs are θ-symmetric functions.
Thus, for a θ-sym function Φ , it is necessary to define or calculate
it in one of the intervals [0, θ ] or (θ , 1].

We first define the contrast intensificator CIb on [0, θ ], for b =

θX (= θ , for short), as follows:

Cc,θ (l) =
|l − θ |

l + θ
, CE = (.)γ , i.e. CE(s) = sγ ,

where γ = γ (θ,m) = ln
(
1 − mθ

1 + mθ

)/
ln

(
1 − θ

1 + θ

)
.

That is, CE(Cc,θ (l)) =
(

|l−θ |

l+θ

)γ
. On the interval (1 − θ , 1], CE is

obtained by rule Rθ , i.e.

C
c,θ (l) = Rθ (Cc,θ (l)) =

l − θ

2 − (l + θ )
, CE(C

c,θ (l)) =

(
l − θ

2 − (l + θ )

)γ

,

for l ∈ (θ, 1] (17)

Utilising the θ-sym rule Rθ , it is only necessary now to define
Hintθ on the interval [0, θ ]. Because, by Lemma 1, γ (θ , m) < m ∈

(0, 1), obviously we have CE(c) = (c)γ ≥ c, c ∈ Ic, and hence, it is a
contrast enhancement operator defined by (9). With such specific
features, this CI, denoted by Hintθ , can be written as follows:

Hintθ = C−1
c,θ ◦ CE ◦ Cc,θ , noting that C−1

c,θ

(
|l − θ |

l + θ

)
= l,

for all l ∈ [0, θ] (18)

or Hintθ (l) = C−1
c,θ

(
Cc,θ (l)

)γ
= C−1

c,θ

(
CE(Cc,θ (l))

)
and

Cc,θ (Hintθ (l)) = CE(Cc,θ (l)) (19)

Thus, (19) states that Hintθ is computed by means of the con-
trast enhancement operator CE defined by using an exponential
function and the contrast measure operator Cc,θ ; hence, the ex-
plicit expression of Hintθ can be easily established together with
its properties as follows:

Theorem 1. For a given LKBKb, let the assumptions on the semantics
of AX and AY of the luminance linguistic variables be the same
as those given in Definition 1 and the parameters βX, βY , and m
be satisfied by (14). Then, Hintθ defined by (18) and (19) has the
following properties:

(i) Hintθ is a CI, which is explicitly represented by

Hintθ (l) =

⎧⎨⎩θ
1−CE(C

c,θ (l))
1+CE(C

c,θ (l)) for 0 < l ≤ θ

1 − (1 − θ)
1−CE(Cc,θ (l))
1+CE(Cc,θ (l))

for θ < l ≤ 1
(20)

where γ = γ (βX,m) = ln
(

1−mβX

1+mβX

)
/ln

(
1−βX

1+βX

)
.

(ii) Hintθ defines a non-linear interpolation method, i.e. it runs
through the points given in (13) produced by the LKB in (12), that is,
Hintθ (l) = INTMd(Kb,Hintθ )(l). Moreover, we have

max
l∈(0,vX(c−))

Hintθ (l)
l

= min
l∈(vX(c−),θ )

Hintθ (l)
l

= max
l∈(θ,vX(c+))

1 − Hintθ (l)
1 − l

= min
l∈(vX(c+),1)

1 − Hintθ (1 − l)
1 − l

= m

Proof. See Appendix B.

Because it will be seen that the proposed method is more
effective than the methods proposed by Cheng et al. [21,22], it
is useful to expose its following specific properties, which are
different from their corresponding contrast enhancement operator
CECh and contrast intensificator CICh.

Theorem 2. Let AX and AY be HAs with the same assumptions
as given in Theorem 1, where the fuzziness parameters of AX are
µ (VeryX) = βX = β and fm(c−) = θ . Assume also that the
parameter m is equal to ξ , defined in [21]. Then, Hintθ has also the
following features:

(i) The contrast enhancement produced by CEθ of Hintθ is larger
than the one produced by CECh of CICh proposed in [21], i.e. we have
CEθ =

(
Cc,θ (l)

)γ
> CECh =

(
Cc,θ (l)

)ξ t , for t ∈ [0, 1], noting that the
contrast measure operator Cc,θ of Hintθ and the one of CICh are the
same.

(ii) In the luminance interval ℑ
(
Vc−

)
= [0, vX

(
c−

)
], which

represents an interval semantics of Vc− = ‘very_low’, Hintθ intensifies
the image contrast better than CICh does, i.e. we have, for ∀l ∈

ℑ
(
Vc−

)
= [0, vX

(
c−

)
], Hintθ (l) < C−1

c,θ (CECh(Cc,θ (l))) = CICh(l).

Proof. See Appendix C.

Remarks. Because the fuzziness parameter values of θX and θY are
equal, i.e. the semantics intervals of the word low = c− of X and Y
are identical, the inequality in (ii) means that the region of lumi-
nance of the output image (the variable Y) linguistically described
by very_low produced byHintθ is greatly reduced compared to that
produced by CICh. Consequently, the semantics interval of theword
little low produced by Hintθ is larger than that produced by CICh.

In fact, as aforementioned, because the structure of HAs is sym-
metric to the neutral word W lying in between c− and c+, which
corresponds to the numeric value θ in the normalised domain [0,1],
it is required that Hintθ is θ symmetric, and hence, Hintθ on the
interval [θ , 1] can be computed from Hintθ defined in [0, θ ] by
applying the θ rule. It is different from the way the operator CICh is
defined by (21) given below, in which δ plays the role of θ , where
CICh is not required to satisfy the δ-symmetric rule. In addition,
using this formula to compute the values of CICh in [δ, 1], there are
numerous values of CICh beyond its normalised range [0, 1]. In fact,
assume that the range of luminance values of CICh is normalised to
be [0, 1]. By its definition,

CICh (l) =

⎧⎪⎨⎪⎩
δ
1−C

c,δ(l)ξ
t

1+C
c,δ(l)ξ

t for l ≤ δ

δ
1+C

c,δ(l)ξ
t

1−C
c,δ(l)ξ

t for l > δ
(21)

Clearly, we have Cc,δ (δ)ξ
t
= 0 and Cc,δ (1)ξ

t
=

( 1−δ
1+δ

)ξ t
> 1−θ

1+θ
on the interval [δ, 1]. It follows that there exists an l0 ∈ (0, 1) such
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that Cc,δ (l0)ξ
t
=

1−δ
1+δ

, which implies by the increasingmonotonic-
ity of Cc,δ (l)ξ

t
that, for ∀l ∈ (l0, l), Cc,δ (l)ξ

t
> Cc,δ (l0)ξ

t
. Thus, by

(21), for∀l∈ (l0, l),wehave CICh (l) = δ
1+C

c,δ(l)ξ
t

1−C
c,δ(l)ξ

t > δ
1+C

c,δ(l0)ξ
t

1−C
c,δ(l0)ξ

t =

δ
1+ 1−δ

1+δ

1− 1−δ
1+δ

= 1, which is what we expect.

4. Proposed method of image contrast intensification

In this section, for a given rawmultichannel image i, we present
how one can construct an image CI on a formal basis presented
in Sections 2 and 3. It is different from the image CIs in the
indirect approach that deal with image histograms. The image
CIs examined in this study deal directly with the luminance at
each pixel, i.e., the atomic elements of the image. Therefore, the
proposed method will be constructed based on a perspective that
it must preserve the global image features aswell as local details of
iwhen changing the luminance at pixel level. Thus, it is developed
to achieve a balanced combination between (i) the operator Hint,
which is defined by (12)–(20) in Section 3, to utilise the inherent
semantics of LKB expressed by a human expert based on his/her
global view ofmultichannel images but applied to individual pixels
of each image channel and (ii) a standard FCM, Cfz , applied to the
entire multichannel i. The first-time application of human user’s
LKB and the FCM of the proposed method makes it different from
the existing methods in this field. Note that when Hint deals with
an LKB formulated for the entire i, it may preserve certain global
image features. However,whendealingwith the luminance at each
imagepixel of every channel, itmay lose imagedetails. Thus, before
Hint is applied to the individual channels of i, the FCMCfz is utilised
to divide the whole i into fuzzy clusters to reveal useful global
features derived from the similarity of the pixel luminance of i.
Then, a fuzzificator F k of ik, which is the projection of i on each
k channel, is formed by an aggregation of the natural fuzzificators
of its clusters projected on the k channel to capture the revealed
cluster features. Now, Hint is applied to F k(ik) instead of ik. Thus,
as each luminance lij of a pixel pij of i belongs to every fuzzy cluster
with its weight, Hint maymaintain the global features of the fuzzy
clusters when changing F k(lij).

4.1. General description of how to construct an image CI

As previously mentioned, any image i of K channels can be
identified with a mapping-vector i = (i1, . . . , iκ ), where ik : {pi,j :
i = 1 to M and j = 1 to N} → [Lk,min, Lk,max], which is identified
with the k-channel ik of i. The luminance of each pixel pi,j of i is
then represented as a vector l⃗ij = (lij,1, . . . , lij,K ), where lk,ij = ik(pij)
∈ [Lk,min, Lk,max], and we can write it as i = {i(i, j) = l⃗ij, for 1 ≤ i ≤ M
and 1 ≤ j ≤ N}.

As LKB is a distinguished feature of the proposed method, to
make use of human expert capabilities to construct the operator
Hint acting on a given input i, the following main tasks must be
done including the determination of the syntax and semantics of
variables X and Y:

Task 1. Define the syntactical semantics of variables X and Y of i.
It is required to determine which hedges are suitable for i. For the
syntactic semantics of X and Y , it is necessary only to determine
the negative and positive hedges and their relative signs to form a
table similar to Table 1. In this study, one negative and one positive
hedge are sufficient to show the performance of the constructed
Hint. The syntactic semantics of a variable depends strongly on
which hedges are used. For example, assume that eitherH = {R, V }
or H’ = {L, V }, whose hedges are selected from a natural language,
is applied for X. The syntactic semantics of X defined by eitherH or
H’ is relatively different, as shown by comparing the relative signs

Table 2
Relative sign of a hedge of H in a row with respect to a hedge in a column.
sign(h, k) V R

V + −

R − +

Table 3
Relative sign of a hedge of H’ in a row with respect to a hedge in a column.
sign(h, k) V L

V + +

L − −

of their hedges determined in Tables 2 and 3. Thus, which syntactic
semantics of a variable is suitable for idepends on the experience of
the expert in rendering his/her LKB. When the syntactic semantics
of X and Y is defined, the expert may formulate his/her LKB B to
change the luminance, say

B = {Rule r i := If X is xi then Y is yi : xi ∈ Dom(X)
and yi ∈ Dom(Y), i = 1 to n}

which in the field of image contrast intensification, must always be
increasing, i.e. it defines an increasing linguistic function.

Task 2. Determine the quantitative semantics of X and Y at each
image pixel pij. It is necessary to provide only suitable numeric
values of the fuzziness parameters of the variables. These values
are determined based on twomain requirements: (i) to capture the
inherent semantics ofwords, i.e. they at least satisfy constraints (1)
and (2) in Section 2; (ii) to capture local features of i at each image
pixel pij. In this study, the numeric semantics of W or the SQM
value θ = fm(c−) of W and the fuzziness parameter βY related
to the fuzziness measure of the hedges of Y of the output-image
luminance should be determined in close relation to the image
characteristics at pij. For instance, in this study, θ may be defined
by the surrounding luminance bij of pij, and βY of the k channel
is defined by βYk,ij =

√
ξk,ijβXk,ij , where ξk,ij is Cheng’s local

feature [21]. It is advantageous that, for a given syntactic semantics
of a variable, when its fuzziness parameter values are provided, the
compt.-semantics of all words of the variable can be calculated,
even if they are potentially infinite, as discussed in Section 2,
whereas in the fuzzy set-based approaches, the fuzzy sets of the
words in question are individually constructed by experts. When
an additional word is required, the fuzzy sets constructed for the
old words must be reconstructed.

Task 3. Determine amethod of computing the S function described
by the expert’s LKB. Transform the expert’s LKB B representing an
increasing linguistic function defined on the words of X present in
B into a grid of points in the Euclidean space [0, 1]2; then, compute
a numeric S function going through the points of the grid that
represents a desired image CI.

• As discussed in Section 2, Point 2.2.1, and Example 1, when
providing the fuzziness parameter values of each variable X

or Y , it is easy to compute the numeric semantics (i.e. the
values of SQMs vX and vY ) of their words. The LKB B con-
sidered as defining n linguistic points (xi, yi), i = 1 to n, can
be transformed into a grid G of n points (vX (xi), vY (yi))’s in [0,
1]2, while preserving the semantic order of the words.

• Apply a suitable interpolation method preserving the mono-
tonicity of B to the grid G to produce an S function of the
desired CI. For example, Hint examined in Section 3 is con-
structed by an interpolation using a non-linear increasing
function defined by (20).
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4.2. Keeping a balance of global image features and its local details by
using FCM Cfz

As mentioned above, the operator Hint is constructed based on
utilising a given LKBB, interpreted as representing a global feature,
because it is formulated based on a global expert’s view of the
given image i, although it is applied at each image pixel. This is
a way to achieve the balance mentioned above. To enhance this
balance, a proposed method is developed to combine the operator
Hint and a standard FCM, Cfz , applied to the whole image to reveal
some of their useful global features, which can be deduced from
the similarity of the pixel luminance values of i.

The idea of combining Hint with the FCM Cfz is realised as
follows. Assume that i is decomposed into C fuzzy clusters by
Cfz . These fuzzy clusters are projected to each channel ik. Then,
compute the fuzzy histogram of each projected cluster and its
dynamic range [Bck1, Bck2] ⊆ [Lk,min, Lk,max]. Now, the fuzzified
luminance l of the given image i projected to ik is computed by

Fk (l) =

∑C
c=1 min

{
max

{
l−Bck1

Bck2−Bck1
, 0

}
, 1

}
C

∈ [0, 1] (22)

where F k(l) is the normalised luminance value of i’k of ik, i.e. the
projection of i to ik. The operator Hint is now applied to i’k instead
of ik. In this way, the proposed method may preserve the global
cluster feature revealed by the FCM applied to the whole image i.

4.3. Algorithmof image contrast intensification based on the proposed
method

The image CI Hint is developed by utilising an LKB B formulated
by an expert based on a global view of an entire given image but
is applied to change the luminance at each pixel of the image ik,
where k = 1 to K. Therefore, the fuzziness parameter values of
the linguistic variables X and Y to compute the numeric seman-
tics of B are pixel-dependent, and hence, must be determined at
each pixel, as discussed in Section 4.1. In this algorithm, they are
determined as follows to utilise specific local features of the image
at each pixel pij, using two local features δ′

k,ij and ξk,ij, where ξk,ij is
Cheng’s amplification constant [21] while δ′

k,ij is defined similarly
as Cheng’s feature δk,ij, themean non-homogeneity grey value for a
specified window, but the local homogeneity measurement exam-
ined in [21] is redifined by using nanother aggregation operator as
examined in Section 5.1.1: Assume fm

(
c−

X

)
= fm(c−

Y ) = θ ; then,
put θ = δ′

k,ij(F k(ik)), βX = 0.6, and βy = (0.6*ξk,ij)1/2. When these
fuzziness parameters are determined as such, Hint is completely
defined.

For an image i = (i1, . . . , iK ) having K channels, before Hint is
applied to i, it is divided into C clusters, for a given integer C, by
applying a standard FCM. It computes C centres of the clusters, v⃗c
= (vc1, . . . , vcK ), and membership degrees µc,ij of every luminance
vector l⃗ij = (l1,ij, . . . , lK ,ij) to the c-th cluster with the kernel v⃗c , for
c = 1 to C, where 1 ≤ i ≤ M and 1 ≤ j ≤ N, using the following
objective function:

J (v, µ) =

n∑
i,j=1

C∑
c=1

µ
p
c,ijD

(
v⃗c, l⃗ij

)2

=

n∑
i,j=1

C∑
c=1

µ
p
c,ij

K∑
k=1

(vc,k − lij,k)2 → min

subject to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µc,ij ∈ [0, 1] , for ∀i, j and∀c: 1 ≤ c ≤ C
C∑

c=1

µc,ij = 1, for ∀i, j∑
i,j

µc,ij > 0, ∀c: 1 ≤ c ≤ C

(23)

where the parameter p > 0 is specified as 2. Thus, for every cluster
c, the image i is associated with an indexed set {(⃗lij, µc,ij) : 1 ≤ i ≤
M and 1 ≤ j ≤ N}.

For k, 1 ≤ k ≤ K, and any lk ∈ [Lk,min, Lk,max], putting Prk(lij,1, . . . ,
lij,K ) = lij,k and ik

−1(lk) = {(i, j) : Prk(i(i, j)) = lk}, the fuzzy histogram
of ik is defined as follows:

hck (lk) =

∑
(i,j)∈i−1

k (lk)

µc,ij ∈ [0,MN] (24)

Proposed algorithm Hint-FCfz

Input:

• A K -channel image i with the luminance domain of each k-
channel ik being [Lk,min, Lk,max];

• An LKB Kb associated with two HAs AX (of i) and AY (of the
output of i’) with their specified syntactic semantics and the
specified fuzziness parameter β = µ(VeryX) of AX of only the
input variable X, in which both are commonly applied to all
pixels pij’s of i;

• Parameter d, which is the size of the window at each pixel, d
× d;

• C, which is the number of clusters of Cfz ;

Output: The contrast-enhanced image i’ of i, i’ = Output(i)

For each pixel pij
For each ik = {ik(pi,j) ∈ [Lk,min, Lk,max] : i = 1 to M and j = 1 to

N}, 1 ≤ k ≤ K,
Step 1. Construct a fuzzificator for every ik based on the standard

FCM, Cfz , of the whole image i:
1.1. Cluster thewhole image i into C fuzzy clusters that produce

C arrays, c = {(⃗lij, µc,ij) : 1 ≤ i ≤ M and 1 ≤ j ≤ N}, for c = 1 to C.
1.2. For each k = 1 to K , compute a fuzzy histogram hck : [Lk,min,

Lk,max] → [0,MN] using (24).
1.3. Compute a dynamic range of grey levels of ik for every

cluster c: for any c = 1 to C, compute parameters Bck1 and Bck2
using the following formulas (25):

Bck1 = arg min
Lk,min≤B≤Lk,max

⎧⎨⎩
B∑

l=Lk,min

hck (l) ≥ f ∗

Lk,max∑
l=Lk,min

hck (l)

⎫⎬⎭
Bck2 = arg max

Lk,min≤B≤Lk,max

⎧⎨⎩
Lk,max∑
l=B

hck (l) ≥ f ∗

Lk,max∑
l=Lk,min

hck(l)

⎫⎬⎭

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(25)

where f is a parameter. Note that Bck1 and Bck2 are determined from
the fuzzy clusters produced by Cfz projected on the k channel. This
establishes a method of relating K channels i1, . . . , iK of i to each
other as indicated in (22).

1.4. Construct a fuzzificator F k of ik, F k : ik → [0, 1], k = 1 to K
as follows: for every pixel pi,j with luminance lij ∈ [Lk,min, Lk,max],
compute F k(l) using (22) and (25).

Step 2.
2.1. Compute Cheng’s parameters characterising specific local

features at each pixel based on the ordinary histogram Hk of F k(ik).
2.2. Compute the array of the mean non-homogeneity grey

values δk,ij of the windows of size d × d surrounding each of M ×

N pixels of F k(ik).
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2.3. Compute the pixel contrast amplification constants ξk,ij.
Step 3. Compute Hintθ (lk,ij) by applying the reasoning method

INTMd(Kb,Hintθ ) (see Theorem 1)
3.1. Determine suitable values of independent fuzziness param-

eters of AX and AY at pij:
fmk(c−) = θk,ij = δk,ij(F k(ik)), βX,ij = β (the input parameter),m

= ξk,ij, and βY,ij =
√

βm.

3.2. Calculate amplification constant, γk,ij =

log
(

1−βξk,ij
1+βξk,ij

)
log

(
1−β
1+β

) .

3.3. Compute the contrast enhancement operator CE at pixel pij
of F k(ik):

3.3.1. Putting l̂k,ij = Fk,ij
(
lk,ij

)
, compute its contrast Cc,b, where

b = θk,ij, at pixel pij

Cc,θk,ij

(
l̂k,ij

)
=

⎧⎨⎩
θk,ij−l̂k,ij
θk,ij+l̂k,ij

for 0 ≤ l̂k,ij ≤ θk,ij

l̂k,ij−θk,ij

2−(θk,ij+l̂k,ij)
for θk,ij < l̂k,ij ≤ 1

3.3.2. Compute CE
(
Cc,θk,ij

(
Fk,ij

(
lk,ij

)))
=

(
Cc,θk,ij

(
Fk,ij

(
lk,ij

)))γk,ij

∈ [0, 1].
3.4. Compute the value Hintθ (lk,ij): based on Theorem 1, where

Hintθ = C−1
c,θ ◦ CE ◦ Cc,θ .

Step 4. Compute the luminance l′k,ij value at pij of the output F ′

k
of F k(ik):

4.1. lFk,ij =

⎧⎪⎪⎨⎪⎪⎩
θk,ij

1−CE
(
C
c,θk,ij

(
l̂k,ij

))
1+CE

(
C
c,θk,ij

(
l̂k,ij

)) for 0 ≤ l̂k,ij ≤ θk,ij

1 − (1 − θ)
1−CE

(
C
c,θk,ij

(
l̂k,ij

))
1+CE

(
C
c,θk,ij

(
l̂k,ij

)) for θk,ij ≤ l̂k,ij ≤ 1
,

where lFk,ij ∈ F ′

k.

4.2. l′k,ij = F−1
k

(
lFk,ij

)
= max1≤c≤C {Bck2 − Bck1} l̂k,ij +

∑C
c=1 Bck1

C

End For each ik, 1 ≤ k ≤ K.
End For each pixel pij,
Return the output image i’.

Wemust emphasise that, according to our knowledge, the fuzzy
clustering technique is for the first time applied to fuzzify channel
images in this topic to exploit regional features of the fuzzy regions
defined by fuzzy clusters. As the applied FCM works on a whole
multichannel image, each obtained fuzzy cluster c determines K
fuzzy clusters ck’s projected on their respective K channels. Hence,
the fuzzificators F k’s defined in Step 1 are dependent from each
other and they can exploit local features of the fuzzy regions ck,
c = 1, . . . , C, for every k. Similarly, the parameters Bck1 and Bck2
computed using the fuzzy histograms hck are examples of exploit-
ing local features of the components ck’s in the context of thewhole
fuzzy region c. This technique may maintain certain dependence
between the image channels in representing image details, whilst
a balance between global features and local ones of the input image
can be reached.

5. Experiments

Because the proposed method is composed of three compo-
nents, namely the operator Hint, a homogeneity measurement
HOMP improved from the one proposed in [21], HOCh03, and the
FCM FCfz , the intended experiments are organised, first, to show
the efficacy of the individual proposed components, and second, to
show the effective performance of the proposed method Hint-FCfz
using the surrounding luminance defined from HOMP . The experi-
mental data for the first objective are the six images shown in Fig. 4,
which seem to be sufficient for examination of the functionality
of the proposed components. For the second objective, 27 images
are taken as inputs consisting of the ones shown in Fig. 4 merged

with 24 of 25 images of image database TID2013 [63] except for its
unique one, which is artificially made. To attain these objectives,
the following four experiments will be performed:

Exp1. To show the outperformance of Hint over Ch03 using the
same contrast definition.

Exp2. To examine the effect of FCfz by comparing Hint-FCfz and
Hint.

Exp3. To compare the proposed Hint-FCfz with Ch03-FCfz , with
both following the direct approach.

Exp4. To compareHint-FCfz with four indirectmethods, namely
ESIHE [64], RICE [65], GHMF [66], and ROHIM [67].

If these experiment results could provide affirmative answers,
we might conclude that the above proposed components actually
have practical meaning.

5.1. Experiment preparation

First, we need a preparation including a proposal of new lu-
minance homogeneity measurement of image region, which can
contribute to improve the contrast measure operator Cc,b, and a
discussion of criteria of quality assessment ofmultichannel images.

5.1.1. Proposal for a new local homogeneity measurement
The main contribution of the study [21] is its proposed local

homogeneity measurement of the luminance values of a window
wij of the image pixel pij, denoted by HOCh03(lij, wij), which are
in turn defined by its opposite notion, the measure of local non-
homogeneity of thiswindow, and an image contrastmeasure of the
pixel. Because that study shows the significant role of homogeneity
measurement, it is necessary to examine itmore carefully to define
it.

The homogeneitymeasurementHOCh03(lij,wij)within awindow
wij is defined as a function of four factors: the edge value describing
the magnitude of the gradient at pij; the standard deviation, which
is the luminance dispersion within wij around lij; the entropy,
which is the distribution variation; and γ4, which is the impulsive-
ness of the distribution in wij. These values, which are normalised
in [0, 1], and their complements representing the negation of
the respective factors, are calculated and denoted respectively by
E(lıȷ, wıȷ), V (lıȷ, wıȷ), H(lıȷ, wıȷ), and R4(lıȷ, wıȷ). Then, we have [21]

HOCh03(lij, wij) = E(lıȷ, wıȷ) ∗ V (lıȷ, wıȷ) ∗ H(lıȷ, wıȷ) ∗ R4(lıȷ, wıȷ) (26)

However, by analysing our performed experiments, we observe
that by applying such HOCh03, the quality of the images is not
always good. For example, the image in Fig. 5a pixelwise exposed
by the HOCh03 values of the image I04 is clearly not smooth by hu-
man visual perception. Maybe this is because these factors play an
equal role in such a combination. To seek for a better aggregation
of these factors, we examined more than 30 combinations using
various operators such as min, max, product, Yager, Zimmerman,
Hamacher, Dombi, Aczel, and weighted average, which can be
found in [68]. We observe that while the two factors V (lıȷ, wıȷ) and
R4(lıȷ, wıȷ) are continuous, the two remaining ones are not. This
suggests us to introduce the following aggregation Max-Product
(MP), for our combination:

HOMP (lij, wij) = max
{
E(lıȷ, wıȷ) ∗ H(lıȷ, wıȷ), V (lıȷ, wıȷ) ∗ R4(lıȷ, wıȷ)

}
(27)

To demonstrate the effect of this HO-measure HOMP , we expose
two images given in Fig. 5a and 5c pixelwise representing the
local homogeneity values of image I04 computed, respectively, by
the HO-measure HOCh03 defined in (26) and by HOMP defined in
(27) for comparison. They show that Fig. 5c is much smoother
and much brighter than Fig. 5a. Similarly, the output image made
by the method Ch03 itself but using the local values computed
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Fig. 4. Some selected original different low contrast images for experiments: three dark images #1 to #3 and three bright images I03, I04, and I07.

Fig. 5. (a) Image formed by the homogeneity of RGB-image I04 using HOCh03 (b) Output image of method Ch03 using HOCh03 (c) Image formed by the homogeneity of
RGB-image I04 using HOMP (d) Output image of method Ch03 using HOMP .

based on HOMP instead of its HOCh03, shown in Fig. 5d, is smoother
than the output image of the same method but using those values
calculated based on its own original HOCh03 given in Fig. 5b, in
which the rectangle-marked regions are not quite smooth andhave
lost certain details. Hence, from now on, the HOMP in (27) will
always be used instead of HOCh03 for Hint.

5.1.2. Criteria for image quality assessment
To analyse and assess the experiment results, human visual

criterion, an objective criterion for direct image contrast assess-
ments, and someother objective criteria for indirect image contrast
assessments are taken into consideration. Due to the complexity
of image quality assessment, none of them is the best and they
complement each other in assessing the quality of the images
obtained. They comprise the following:

(1) Contrast measure criterion CM. We consider the following
objective criterion, which is the mean of the image contrast mea-
surement defined in (28), in which b = δk(i, j) is the mean non-
homogeneity grey value at pixel pij of the k channel defined in [21]
but using HOMP defined by (27) instead of HOCh03.

CMδ (ik) =
∑

i,j
|ik(i,j)−δik (i,j)|
ik(i,j)+δik (i,j) /MN (28)

(2) Entropy criterion Eavg (i). It is known that the entropy and
fuzzy entropy indicators examined for the objective criterion can
reveal finer details that do not clearly appear in the original image.
The entropy of an image indicates the average information of the
whole image and the higher the entropy, the richer the details
of the raw image that the contrast-enhanced image can preserve.
Therefore, similarly as above, we introduce the following objective

criterion:

Eavg (i) =

∑K
k=1 E(ik)
K

(29)

where E (ik) = −
∑Lk,max

lk=Lk,min
pk(lk) log2(pk (lk)), for pk (lk) =

hk(lk)
MN

(3) Fuzzy entropy criterion E linF . For every fuzzificator F of a k-
channel image ik of i with its fuzzy membership function µF , the
fuzzy entropy of ik, denoted by EF , is defined as given in Box I:

Let F be a natural transformation, µlinF (ik (i, j)) = ĩk(i, j) =
lk(i,j)−Lk,min
Lk,max−Lk,min

. Then,

ElinF (ik) = −

∑
i,j

(
ĩk(i, j) log2

(
ĩk(i, j)

)
+

(
1 − ĩk(i, j)

)
log2

(
1 − ĩk(i, j)

))
MN

,

and put

ElinF ,avg (i) =

∑K
k=1 ElinF (ik)

K
(30)

The fuzzy entropy of a fuzzification of an image can be con-
sidered as a useful criterion of image quality. The lower the fuzzy
entropy, the higher the contrast of the whole image.

5.2. Experiments and comparative analysis

We subsequently perform the four aforementioned experi-
ments Exp1 to Exp4. In the comparative study, the quantitative
criteria presented above will be applied to assess the quality of
the input images as well as the respective output images of both
methods in each experiment. By their objectives, Exp1 and 2 are
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EF (ik) = −

∑
i,j (µF (ik (i, j)) log2 (µF (ik (i, j))) + (1 − µF (ik (i, j))) log2 (1 − µF (ik (i, j))))

MN
.

Box I.

Table 4
Determined parameter values of Hint Cfz .

For AXk,ij For AYk,ij

fmXk,ij

(
c−

)
= δk,ij(Fk(ik)) fmYk,ij

(
c−

)
= fmXk,ij

(
c−

)
βXk,ij = 0.6 βYk,ij =

√
ξk,ijβXk,ij

Fig. 6. Difference of the output of Ch03 applied to image I04 and its original: (a)
Image formed by the homogeneity of the RGB-image I04 usingHOCh03 (b) Difference
of the output image luminance and its original multiplied by 10.

performed on RGB images, whereas Exp3 and 4 are performed on
both RGB and HSV images. For the operator Hint, depending on
the requirement of each experiment, the luminance surrounding
value at each pixel is computed using either the proposed HOMP
or HOChe03. The values of the fuzziness parameters of Hint are
determined as given in Table 4 and used for all experiments.

Exp1:Hint vs. Ch03. To show the actual performance of the com-
ponent Hint, before it is integrated into Hint-FCfz as a whole, it is
necessary to compareHint with themethod Ch03 examined in [21].
That is, Hint and Ch03 are applied to the same image fuzzified by
the ‘natural’ fuzzificator, which in nature is the normalisation of
the luminance domain [Lmin, Lmax] into [0, 1]. In addition, the local
features δk,ij and ξk,ij commonly used for both Hint and Ch03 must
be equal and the related parameters to run both operators must
also be the same. Here, the experiment is organised to be able to
compare the effectiveness of both operators on each channel, R,
G, and B, as well as on the entire RGB image itself. Under such
conditions, we can properly assess their effectiveness using the
objective criteria discussed above.

To execute the experiment, the only common running param-
eter d indicating the window size of each pixel is set as d = 3
for both operators to guarantee that all the common local image
feature values are equal. The only one running parameter of Ch03,
which is the exponent t of the amplification constant ξk,ij, is set as
0.25∈ {0.25, 0.5}. Moreover, except for the parameter values given
in Table 4, the fuzziness parameter αk,ij = µ(Little) of Hint is set as
0.4.

The experiment results produced by Hint and Ch03 acting on
the six input images given in Fig. 4 and assessed by the criterion
CM applied to each individual channels R, G, and B of their output
images and by the entropy criteria Eavg and E linF ,avg applied to the
whole output images are presented in Table 5. It shows that Hint
is better than Ch03 in almost cases and this demonstrates generally
that the performance of Hint is more effective than that of Ch03,
noting that in contrast to Eavg , for E linF , the larger the value of E linF ,
the lower the contrast feature of the whole image.

To assess the performance ofHint and Ch03 in relation toHOCh03
with respect to the human visual perception, we apply both oper-
ators to, for instance, image I04, which has a low contrast. Fig. 6a
shows the image representing simultaneously the homogeneity
values HOCh03,ij’s of all three individual channel images of image
I04 and Fig. 6b represents the difference of the luminance of Ch03’s
output image i’ of image I04 with the luminance range [0, 255]
and the luminance of its original one after multiplying by 10 for
an acceptable human visual perception. By a rule discussed in [21],
the image shown in Fig. 6a shows that the brighter (darker) the
degree of its region, the higher (lower) the homogeneity of the
corresponding region of the original image, which implies smaller
(larger) contrast changes made by the ICE method in this region of
the original image. It can easily be observed by human visual per-
ception that it is very difficult to observe the luminance variation
of the image given in Fig. 6b, and even in very dark regions such
as those around the eyes of the image, the luminance variations
on these regions are very small. The homogeneity measure on the
regions of the input image corresponding to these dark luminance
regions of Fig. 6a are low, on which it is required to enhance their
contrast more, according to the rule in [21] just mentioned. The
method Ch03 to enhance the image contrast by applying a power
transformation with its base smaller than 1 and its exponent being
the amplification constant ξk,ij [21] is developed by utilising the
above rule: the larger the ξk,ij value, which is equivalent to a higher
homogeneity on an image region, the smaller the degree of contrast
enhancementmade by Ch03 on this region. However, Fig. 6b shows
that the degree of contrast enhancement of image I04made by Ch03
is still small. Although Hint can change the image contrast at each
pixel better, the same situation still occurs in our experimental
study of Hint. This shows that the functionality of HOCh03 is not as
expected.

◦ Exp2: Hint-FCfz vs. Hint to show the expected functionality of
FCfz . As discussed in the end of Section 4, for the proposed method
Hint-FCfz , the clustering operator FCfz acts on the whole image
i = (iR, iG, iB) to cluster it into C clusters. Then, for every cluster
c, c = 1 to C, the dynamic ranges of grey levels of ik, Bck1(f ) and
Bck2(f ), are computed, where f is a constant parameter and k ∈

{R, G, B}. Based on these values, the fuzzificator F k of the channel
image ik is established by the formula given in Point 1.4 of Step 1 of
the method Hint-FCfz in Section 4.3, which may be considered as
an ‘average aggregation’ of C natural fuzzificators of the dynamic
ranges of the individual clusters c’s, c = 1 to C. In running FCfz ,
C (in {2, . . . , 10}) is set as 5 and f = 0.005. Formally, there is a
significant difference between FCfz and the fuzzificator examined
in [22], denoted by F Ch0, as follows: whereas, for each channel,
the operator F Ch0 seeks for only a unique dynamic range of grey
levels in thewhole domain [0, 255], FCfz tries to seek for C dynamic
ranges,whereC is the number of clusters. In addition, it should deal
with all image channels in relation to each other by running on the
total input image.

As argued previously, in this experiment, both operators Hint-
FCfz and Hint are applied to six raw images given in Fig. 4. The
experiment results are assessed by the aforementioned criteria and
listed in Table 6, in which the best criteria values are in bold. It
shows that the operator Hint-FCfz produces better output images
than Hint does for all 6 raw images assessed by criteria CMG, CMB,
and Eavg . It performs better than Hint for all 6 raw images except
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Table 5
Comparison of contrast intensification of Ch03 and Hint applied on six given original RGB images with respect to criterion CM on each channel and to Eavg and E linF ,avg , where
the bold figures indicate the better values of the respective criteria.
Criteria CM Eavg E linF ,avg

Image R G B

Origin. Ch03 Hint Origin. Ch03 Hint Origin. Ch03 Hint Origin. Ch03 Hint Origin. Ch03 Hint

#1 0.1180 0.1241 0.1540 0.1914 0.1981 0.2325 0.2482 0.2538 0.2859 5.9395 6.0291 5.9565 0.3456 0.3509 0.3424
#2 0.0160 0.0168 0.0203 0.0191 0.0205 0.0272 0.0314 0.0349 0.0563 7.3150 7.3186 7.3423 0.8216 0.8214 0.8219
#3 0.0273 0.0299 0.0391 0.0304 0.0330 0.0429 0.0364 0.0395 0.0517 3.4443 3.5617 3.7168 0.2861 0.2850 0.2825
I03 0.0154 0.0169 0.0228 0.0188 0.0202 0.0264 0.0548 0.0569 0.0689 7.4847 7.4849 7.4945 0.8001 0.8001 0.7986
I04 0.0170 0.0178 0.0216 0.0293 0.0307 0.0380 0.0345 0.0359 0.0433 7.3092 7.3033 7.3195 0.8504 0.8521 0.8496
I07 0.0256 0.0273 0.0350 0.0298 0.0324 0.0443 0.0511 0.0537 0.0664 7.4536 7.4561 7.4763 0.8642 0.8639 0.8613

image#3 based on CMR but it performs better only on 2 raw images
#1 and #3, based on criterion E linF ,avg .

It is necessary to note that these objective criteria are global
characteristics because, by their definitions ((29) and (30)), they
are arithmetic averages of image contrast quantities pixelwise
defined. These characteristics indicate the degrees of contrast
changes that the corresponding image CIs can make in the total
image, but it cannot guarantee the quality of the improved local
image details. Therefore, the human visual perception is still very
crucial to evaluate the quality of the output images. However,
in the global viewpoint, these experiment results still show the
expected functionality of the fuzzy clustering FCfz .

◦ Exp3: Hint-FCfz vs. Ch03-FCfz . First, it should be noted that
in order to obtain an accurate conclusion, in this comparative
study, we use Ch03-FCfz instead of Ch03 as the fuzzificator of Ch03
examined in [21], which in nature is only the normalisation of
[Lmin, Lmax] to the interval [0, 1]. When the experiment could show
the better performance of the proposedmethod Hint-FCfz , wemay
conclude that Hint-FCfz would be actually better than Ch03, even
when the latter uses also the better measurement HOMP instead of
HOCh03 and is augmented by the FCM FCfz . To perform Exp3, the
values of the running parameters of the operators Hint, FCfz , and
Ch03 are set the same as those in Exp2. The image data consist of
27 raw images with 24 images of TID2013 and three selected ones
(#1 to #3), which are either of high darkness or of low contrast, as
aforementioned. Both RGB and HSV representations of the image
are all under consideration. Similar to the above, the experiment
results are also assessed by the objective criteria and the relative
percentage difference of each criterion value of an output image
produced by Hint-FCfz and the respective one produced by Ch03-
FCfz are listed in Table 7, in which the better criteria values are
in bold. It shows that the percentage of the better criteria values
of Hint-FCfz vs. Ch03-FCfz are approximately as follows: 96% for
the first three columns, 100% for the next three columns, 85% for
the 7th column, 89% for both the 8th column and the last column,
and 67% for the 9th column. These strongly demonstrate that Hint-
FCfz actually outperforms the counterpart operator with respect to
these global criteria.

◦ Exp4:Hint-FCfz vs. enhancement intensificators of indirectmeth-
ods. To simplify the presentation and space, in this experiment,
we analyse the experiment results using only the criteria Eavg and
E linF ,avg , which are related to the global and local feature details
and the human visual perception when we expose the images in
question in HSV format. As aforementioned, although an image
contrast intensificationmethodmay be evaluated to be better than
another one by these objective criteria, it may still cause losses of
necessary image details. Thus, the human visual perception is still
necessarily applied to evaluate its effectiveness.

Four contrast intensification methods of the indirect approach,
namely ESIHE [64], RICE [65], GHMF [66], and ROHIM [67], are
considered as the counterpart CIs, whose algorithms described in
those papers can also be found in [64,69]. The raw image data
and the run parameters of our proposed method are the same as

above. The criteria values of the output images of the CIs under
consideration represented in HSV format are given in Table 8, in
which the best values are in bold. It is observed that 17/27 (63%)
best Eavg values of the output images are produced by Hint-FCfz ,
but only 2/27 (7%) best E linF ,avg values are attributable to Hint-FCfz .

However, by the human visual perception, we show that the
counterpart methods with better values of Eavg or E linF ,avg may
cause more losses in local image details than Hint-FCfz . In fact,
because most E linF ,avg values of the output images produced by
GHMF given in Table 8 are the best, this suggests first to com-
pare the performance of GHMF and Hint-FCfz . Let us examine
the difference of the corresponding E linF ,avg values of the output
images of the two methods given in the column ‘GHMF \Hint-
FCfz ’. Owing to the limitation of presentation space, we show the
output images of three input images selected to ensure diversity
of the comparison. The remaining output images of the methods
can be found in [70]. First, we consider two images I02 and I24,
which attain respectively the largest difference value, −0.22, and
the median value −0.0836 of the range [−0.22, 0.0468] of the
values of column ‘GHMF \ Hint-FCfz ’. Second, we also consider
image I10 because it has the smallest E linF ,avg value of its output
image of ROHIM examined in [67], which was recently published
in 2017. In addition, it can be checked that, for this image, the
difference of the E linF ,avg values of its output images of methods
Hint-FCfz and ROHIM is −0.1217, which also is approximately a
median value in between the minimum and maximum difference
values of−0.2165 and 0.0051, respectively. In addition, the E linF ,avg
values of 0.5130, 0.7264, and 0.7065, respectively, of the output
images of I02 and I24 produced by operator GHMF and of the
output image of I10 produced by ROHIM are the best among the
E linF ,avg values of the five operators considered. The raw images
I02, I10, and I24 and their respective output images produced by all
these operators are exhibited, respectively, in Figs. 7–9. However,
by the human visual perception, it can be observed in general that
the colours of their output images produced by Hint-FCfz given
respectively in Figs. 7f–9f seem to bemore natural and their details
become more visible than the remaining output images, which
show that many details are more clearly revealed by Hint-FCfz . For
illustration, it can be observed that the selected marked regions of
the raw images aswell as of their respective output images ofHint-
FCfz shown in Figs. 7–9 in general are perceived more colourfully
and clearly than the respective ones produced by the counterpart
methods. Furthermore, many details in these regions are more
clearly visualised.

Particularly, focusing on the marked regions of the images in
Fig. 7, inwhich the raw image is dark and of low contrast, it can also
be observed that the proposed method is actually able to preserve
global features as well as local details of the raw image. This shows
thatHint-FCfz , as a directmethod, can achieve a reasonable balance
between global features and local ones when changing the image
contrast.
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Table 6
Comparison between the performance of Hint-FCfz and Hint with respect to the criteria in question, where bold numbers indicate the best values and italic numbers the
worst values.
Image CMR CMG CMB Eavg E linF ,avg

Hint-FCfz Hint Hint-FCfz Hint Hint-FCfz Hint Hint-FCfz Hint Hint-FCfz Hint

#1 0.3067 0.1540 0.4422 0.2325 0.5537 0.2859 6.7621 5.9565 0.4966 0.3424
#2 0.0503 0.0203 0.0982 0.0272 0.0579 0.0563 7.3506 7.3423 0.7707 0.8219
#3 0.0373 0.0391 0.0441 0.0429 0.0548 0.0517 3.7398 3.7168 0.2923 0.2825
I03 0.0602 0.0228 0.0988 0.0264 0.1491 0.0689 7.6852 7.4945 0.7935 0.7986
I04 0.0909 0.0216 0.1741 0.0380 0.1973 0.0433 7.6426 7.3195 0.8419 0.8496
I07 0.1002 0.0350 0.1464 0.0443 0.1876 0.0664 7.8066 7.4763 0.7929 0.8613

Table 7
Contrast enhancement degree of Hint-FCfz (%) compared to Ch03-FCfz when they are applied to RGB format and HSV format of 27 given raw images.

Image CM Eavg E linF ,avg

R G B

RGB HSV RGB HSV RGB HSV RGB HSV RGB HSV

#1 09.38 144.24 06.02 072.19 04.14 062.04 2.27 12.23 2.410 34.13
#2 05.23 444.51 03.59 023.92 05.66 237.96 −0.31 1.56 0.360 −08.91
#3 05.97 185.63 −06.57 163.06 12.30 142.50 1.20 9.96 1.460 15.17
I01 12.36 175.65 04.98 173.21 09.08 185.46 −0.35 7.68 −0.340 −16.13
I02 11.70 304.68 03.89 198.28 02.99 118.42 4.95 7.24 0.050 01.36
I03 05.24 352.98 02.70 243.28 07.81 062.99 0.34 1.53 −0.001 −04.39
I04 02.48 457.80 03.88 425.58 05.00 491.01 −0.01 5.93 0.110 −09.16
I05 11.71 101.72 08.36 102.86 10.09 072.35 0.78 0.89 0.000 −07.88
I06 01.67 198.47 01.37 159.40 12.16 115.31 0.45 1.58 −0.610 −09.12
I07 03.62 116.22 05.02 092.22 05.16 108.18 0.16 2.28 −0.340 −03.89
I08 17.42 111.34 01.34 114.43 08.58 171.62 0.25 −0.03 −1.100 −09.81
I09 03.91 274.68 07.47 353.12 04.55 479.77 0.51 3.63 −0.670 −11.28
I10 08.97 438.25 08.66 432.32 07.87 806.81 0.62 4.61 −0.980 −08.05
I11 05.16 088.11 04.40 064.89 06.26 55.12 0.42 2.19 −0.170 −06.96
I12 09.05 365.97 07.43 609.36 09.92 400.39 0.71 3.68 −0.290 −05.83
I13 18.81 015.48 15.23 009.61 13.65 008.90 0.90 1.60 −1.650 −11.27
I14 02.54 232.72 08.37 220.46 05.77 141.94 0.32 0.56 −0.360 −07.07
I15 05.81 238.98 07.29 113.66 05.63 249.31 1.62 2.53 0.180 −07.31
I16 07.75 248.07 07.60 272.16 09.37 376.76 1.04 5.59 −1.010 −07.84
I17 03.73 244.41 04.94 194.51 04.97 227.00 0.90 4.26 0.080 −08.00
I18 11.00 148.29 09.46 119.31 06.63 088.34 1.41 2.11 0.120 −04.16
I19 02.45 051.31 05.31 094.55 13.92 079.52 0.55 0.77 −0.630 −05.21
I20 10.32 360.89 04.92 365.57 00.71 402.51 −0.00 −2.32 −0.130 −01.82
I21 84.39 253.75 37.57 245.56 62.67 257.56 2.50 2.29 −9.760 −08.42
I22 07.99 198.12 04.73 240.05 05.40 274.03 0.16 0.37 −0.770 −16.00
I23 01.58 768.02 07.18 775.61 09.53 400.49 0.37 −0.57 −0.180 −10.15
I24 08.97 100.52 06.18 140.23 06.27 280.08 1.00 5.07 −0.630 −08.16
Mean 10.341 245.215 6.716 222.941 9.485 233.199 0.843 3.230 −0.550 −5.413

Fig. 7. Output images of raw image I02 of image database TID2013 produced by operators under consideration for human visual perception.
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Table 8
Values of criteria Eavg and ELinF,avg of output images of enhanced intensificators under consideration, whose raw images are presented in HSV format, where the best values
are in bold.
Image ID Raw images Eavg ELinF ,avg

ESIHE RICE GHMF ROHIM Hint-FCfz ESIHE RICE GHMF ROHIM Hint-FCfz GHMF \ Hint-FCfz

#1 5.9395 6.6176 5.1207 6.7002 5.3846 6.6628 0.5211 0.2793 0.4523 0.6478 0.4574 −0.0051
#2 7.3154 7.4691 7.4358 7.1781 6.8435 7.4364 0.7946 0.7659 0.7019 0.5866 0.7479 −0.0460
#6 3.4443 3.4886 3.6743 3.2663 3.4442 4.1248 0.2632 0.2240 0.1636 0.3339 0.3288 −0.1652
I01 7.2409 7.5023 7.4543 7.6470 7.2075 7.8945 0.8007 0.8502 0.7129 0.8529 0.7453 −0.0324
I02 7.0231 6.9740 7.1843 6.7369 6.2869 7.5610 0.8248 0.6791 0.5130 0.5165 0.7330 −0.2200
I03 7.4847 7.4876 7.4834 7.2844 6.8306 7.6009 0.7554 0.7444 0.7042 0.5790 0.7643 −0.0601
I04 7.3092 7.4382 7.5612 7.1560 6.8622 7.7425 0.7876 0.8091 0.7627 0.5902 0.7734 −0.0107
I05 7.5728 7.6214 7.5884 7.2797 7.1495 7.6645 0.7343 0.6616 0.6163 0.6613 0.6707 −0.0544
I06 7.6130 7.7328 7.6934 7.4857 7.4825 7.7575 0.7258 0.7621 0.7238 0.7187 0.7286 −0.0048
I07 7.4536 7.5746 7.5646 7.3305 7.2661 7.6393 0.8095 0.8124 0.7817 0.7439 0.8285 −0.0468
I08 7.6508 7.7452 7.6566 7.4656 7.3609 7.6859 0.7252 0.7236 0.6881 0.7051 0.6980 −0.0099
I09 7.4954 7.6984 7.6397 7.4251 7.4188 7.7932 0.7597 0.8545 0.8034 0.8079 0.7843 0.0191
I10 7.3664 7.6917 7.5409 7.8570 7.1014 7.7312 0.7941 0.8718 0.7167 0.7065 0.8282 −0.1115
I11 7.3929 7.5068 7.4247 7.1441 7.2649 7.5803 0.7489 0.7069 0.6685 0.8193 0.7130 −0.0445
I12 7.4530 7.5553 7.5594 7.3350 7.2926 7.7387 0.7690 0.7879 0.7145 0.7896 0.7732 −0.0587
I13 7.5329 7.6081 7.6283 7.3750 7.3116 7.6849 0.7528 0.7501 0.7081 0.7788 0.7076 0.0005
I14 7.6961 7.7429 7.7889 7.5014 7.3843 7.7615 0.7521 0.7566 0.7024 0.6611 0.7468 −0.0444
I15 7.1638 7.3422 7.0858 6.7842 6.7314 7.3635 0.7224 0.5729 0.5075 0.7503 0.5981 −0.0906
I16 7.2633 7.5921 7.4561 7.8294 7.1905 7.6884 0.8147 0.8800 0.7290 0.8702 0.8417 −0.1127
I17 7.3354 7.3672 7.4038 7.7182 7.2719 7.6628 0.7002 0.6666 0.6439 0.7852 0.6816 −0.0377
I18 7.1717 7.4235 7.2446 6.8988 7.0403 7.3641 0.7904 0.6570 0.5954 0.8565 0.7002 −0.1048
I19 7.7222 7.8068 7.7969 7.5689 7.5784 7.7948 0.7692 0.7851 0.7580 0.7624 0.7860 −0.0280
I20 6.3135 6.3247 6.1416 5.7374 6.2451 6.2145 0.4733 0.4089 0.3367 0.4544 0.4429 −0.1062
I21 7.3067 7.5464 7.4677 7.2190 7.2245 7.5102 0.7913 0.8416 0.8111 0.8177 0.7996 0.0115
I22 7.4309 7.6705 7.6164 7.3454 7.3408 7.4774 0.7343 0.8006 0.7598 0.7919 0.7130 0.0468
I23 7.7178 7.7288 7.7859 7.5482 7.5328 7.6828 0.7451 0.7528 0.6995 0.7170 0.7194 −0.0199
I24 7.0790 7.3761 7.3259 7.7730 7.0280 7.4819 0.7726 0.8358 0.7264 0.8808 0.8100 −0.0836

Fig. 8. Output images of raw image I10 of image database TID2013 produced by operators under consideration for human visual perception.

6. Conclusions and future study

ICE is one of the most important issues of image processing,
pattern recognition, and computer vision, and it attracts much
attention from researchers in this field. However, most recent
studies rely upon indirect methods that deal with the image his-
togram, whose values are grey level frequencies of images. The
direct methods changing the luminance at each pixel are more

effective than the indirect ones [21], but only few studies follow
them. For the latter methods, it is crucial that such changes of
luminance at the individual image pixels can be considered as a
luminance function, which, based on expert experience, should be
in the form of an S function. As these changes mostly affect local
features on a given image, it is required that they are realised in
a ‘combined manner’ in order to maintain the global information
of the entire image. Thus, the direct approach seems to be more



H.H. Ngo, C.H. Nguyen and V.Q. Nguyen / Applied Soft Computing Journal 76 (2019) 744–762 759

Fig. 9. Output images of raw image I24 of image database TID2013 produced by operators under consideration for human visual perception.

difficult than the indirect one, but it may offer a high potential
to seek for a method of reaching an appropriate balance between
global information and the local one of an image.

In this study, we follow the direct approach and propose a
new formalism, in which the above S function can be constructed
based on expert linguistic rules. This feature is very important as
it permits, for first time, to utilise human expert domain knowl-
edge to solve the ICE problem. Basically, when we could formally
handle this linguistic knowledge, we would be able to simulate
human capabilities in handling linguistic words to solve practical
problems properly. This requires applying HAs, as mathematical
models of word domains, to examine the problem. The main idea
is as follows: because word domains in practice are finite, every
linguistic rule-based knowledge formulated by a human expert to
improve the image quality should represent a linguistic S function
in the Cartesian product of finite word domains of the luminance
variables of a raw image and of its output image. Thus, the key
problem is how one can properly transform such a linguistic dis-
crete S function into a numeric S function in [Lmin, Lmax]2.

The study achieves the following new results:
• Introduce a new HA formalism for developing image CIs. The

theory of HAs can provide a strict mathematical formalism to
immediately handle thewords of variableswith their own inherent

meaning. It forms a basis for developing methods enabling the
developer to transform a linguistic S function mentioned above
into a numeric S function in [Lmin, Lmax]2, so that the semantics of
LKBs are preserved. Although in Section 2.2 and Section 3.2, only
minimally necessary notions and techniques of the HA formalism
are provided, technically, they are sufficient for developing such
methods. The way to construct Hint is an example for illustration.

• Some main effective techniques to change the image contrast.
First is the homogeneitymeasurementHOMP of each pixelwindow,
which is carefully determined from examining more than 30 ag-
gregation operators of the four components examined in [21] and
HOMP defined by (27) is the best. Experimentally, it is shown that it
actually contributes to improve the image quality. Second is, for
the first time, to apply a standard FCM to decompose an image
into C fuzzy clusters based on the similarity of its pixel luminance
values before the operator Hint is applied to its image channels.
As each fuzzy cluster conveys certain global features of the given
image revealed by a similarity measure calculated by the FCM, the
value F k,ij(l) of the fuzzificator F k of each entire channel ik defined
by (22) may convey the global image feature of each fuzzy cluster.
Thus, Hint applied to F k,ij(l) instead of the luminance l itself can
reach a reasonable balance in preserving the revealed global image
feature as well as local details when changing the luminance.
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• Propose an image contrast intensification method Hint-FCfz . It
is a novel method characterised by its specific way of changing
the input image luminance that can be defined by (i) a human
expert LKB for the whole input multichannel image; (ii) the pre-
specified fuzziness parameter values of the linguistic luminance
variables of the input and output image to determine their word
semantics at each image pixel pij; and (iii) local image features
at pij examined [21] to define the homogeneity HOMP in formula
(27). Its performance is validated by a comparative study with
four selected counterpart methods, namely ESIHE (2014), RICE
(2015), GHMF (2015), and ROHIM (2017). All methods are run on
27 images, including 24 of total 25 images of the image database
TID2013 [63]. The obtained experiment results show that Hint-
FCfz , in general, outperforms the counterpart methods based on
the objective criteria, i.e. Eavg (i) and E linF ,avg (i), andbyhumanvisual
perception. Especially, the outputs of Hint-FCfz are obviously more
colourful and many of their features are more clearly visible. This
means thatHint-FCfz can revealmore details than the counterparts
do.

Because the proposed method examined in this study is rela-
tively new based on a strict mathematical formalism, to close the
conclusions, we raise the following problems for further study:

- Problems related to expert capabilities in handling LKBs: The
LKB consisting of only five rules and their words used in this
study are still very simple. The question is whether image CIs
based on more complex LKBs may still be more effective.

- Because several factors may influence the quality of a trans-
formation of linguistic S functions described by a given LKB
into respective numeric S functions, e.g. interpolation meth-
ods and fuzziness parameter values, the question is how can
one evaluate the influence of these factors on the image CI
performance?
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Appendix A. Proof of Lemma 1

To show the validity of inequality (i), we consider the function
g (a) = (1 − a)τ (1 + τa) − (1 + a)τ (1 − τa), which is defined in
[0, 1). As τ − 1 < 0, it is easy to verify that
dg
da

= (a + τa)
[
(1 + a)τ−1

− (1 − a)τ−1] < 0,

which ensures that g is strictly increasing with respect to a in (0,
1). Thus, for all a > 0, g(a) < g(0) = 0, which leads to the inequality
(i).

To prove (a) of (ii), we first keep in mind that the function
f ∗ (l) =

1−l
1+l =

2
1+l −1 is strictly decreasing in [0, 1]. Let us consider

the function f (t) =
( 1−l
1+l

)t
also defined in [0, 1]. Clearly, for τ ∈ (0,

1), we have f (0) = 1 > 1−τ l
1+τ l and f (1) =

1−l
1+l < 1−τ l

1+τ l , where the
last inequality follows from the monotonicity of f* and from l > τ l.
Thus, there exists t = γ that satisfies the equality in (a), with l = a.
By (i) and the hypothesis of (ii), we have 1−γ a

1+γ a >
( 1−a
1+a

)γ
=

1−τa
1+τa ,

which also from the strict monotonicity of f* follows the inequality
γ < τ ,. This shows the validity of the inequality in (a).

To prove (b) of (ii), we consider the function f1(l) =

ln
( 1+τ l
1−τ l

)
/ln

( 1+l
1−l

)
defined in (0, 1). Because it can be verified that

d
( 1+τ l
1−τ l

)
/dl =

2τ
(1−l)2

and d
( 1+l
1−l

)
/dl =

2
(1−l)2

, we have df1
dl =

2
[ln((1+l)/(1−l))]2(1−τ2 l2)(1−l2)

{
τ

(
1 − l2

)
ln

( 1+l
1−l

)
− (1 − τ 2l2)ln

( 1+τ l
1−τ l

)}
= 2/[ln(1 + l)(1 − l)]2(1 − τ 2l2)(1 − l2) × f2(l), where f2(l) =

τ
(
1 − l2

)
ln

( 1+l
1−l

)
−

(
1 − τ 2l2

)
ln

( 1+τ l
1−τ l

)
defined in [0, 1). Clearly,

f 2(0) = 0 and we have df2
dl = 2τ l

{
− ln

( 1+l
1−l

)
+ τ ln

( 1+τ l
1−τ l

)}
. As 0

< τ l < l < 1 and f* is strictly decreasing, we infer that ln
( 1+l
1−l

)
>

ln
( 1+τ l
1−τ l

)
> τ ln

( 1+τ l
1−τ l

)
. This implies that df2

dl < 0, and hence, f 2(l) is
also strictly decreasing. Thus, f 2(l) < 0, which results in the strictly
decreasing monotonicity of f 1 on (0, 1).

Now, to compute f 1(a), by statement (a) of (ii),wehave
( 1−a
1+a

)γ
=

1−τa
1+τa , or equivalently,

( 1+a
1−a

)γ
=

1+τa
1−τa , which leads to f 1(a) = γ by

using the exponential function. As f 1 is strictly decreasing, for ∀l
∈ (0, a), we have f1 (l) = ln

( 1+τ l
1−τ l

)
/ln

( 1+l
1−l

)
> γ . It implies that

ln
( 1+τ l
1−τ l

)
> γ ln

( 1+l
1−l

)
, and hence, 1+τ l

1−τ l >
( 1+l
1−l

)γ
, or equivalently,

1−τ l
1+τ l <

( 1−l
1+l

)γ
, which is just the first desired inequality in (b).

By the same argument, the second inequality in (b) is also valid.

Appendix B. Proof of Theorem 1

(i) We prove first that Hint is a CI. By (26), for l ∈ [0, θ ], we
have Hintθ (l) = C−1

c,θ ◦ CE ◦ Cc,θ (l), and thus, Cc,θ (Hintθ (l)) =

CE(Cc,θ (l)) ≥ Cc,θ (l), by the definition of CE. Because Cc,θ is strictly
decreasing, this inequality implies that Hintθ (l) ≤ l, for l ∈ [0,
θ ]. Similarly, for l ∈ [θ , 1], by the θ-symmetric rule Rθ , we obtain
Hintθ (l) = 1−Hintθ (1 − l) ≥ 1− (1 − l) = l. Consequently,Hintθ
is an operator CI.

To prove the equality in (i), by (28), we have Hintθ (l) =

C−1
c,θ

((
θ−l
θ+l

)γ )
= l′, for l in [0, θ ], which implies that Cc,θ

(
l′
)

=

θ−l′
θ+l′ = CE(Cc,θ (l)). The last equality results in the first equality
in (28) and the second one is immediately derived by rule Rθ .

(ii) It is obvious by its definition that Hintθ (0) = 0 and
Hintθ (θ) = θ . For l = vX

(
c−

)
= θβX, by (i), we have

Hintθ
(
vX

(
c−

))
= θ

1 − CE(Cc,θ (θβX))
1 + CE(Cc,θ (θβX))

= θ

{(
1 −

(
θ − θβX

θ + θβX

)γ )/(
1 +

(
θ − θβX

θ + θβX

)γ )}
= θ

{(
1 −

(
1 − βX

1 + βX

)γ )/(
1 +

(
1 − βX

1 + βX

)γ )}
= θ

{(
1 −

(
1 − mβX

1 + mβX

))/(
1 +

(
1 − mβX

1 + mβX

))}
= θ

{(
1 −

(
1 − mβX

1 + mβX

))/(
1 +

(
1 − mβX

1 + mβX

))}
= θβ2

Y = vY(very_c−)

Applying the θ-symmetric rule Rθ to Hintθ , we obtain Hintθ(
vX

(
c+

))
= vY

(
very_c+

)
and Hintθ (1) = 1. Therefore, we have

proved that Hint runs through the five points in (21).
To prove the equalities of (ii), for γ = γ (βX,m), it follows from

(b) of (ii) in Lemma 1 that 1−ml
1+ml <

( 1−l
1+l

)γ
, where l ∈ [0, βX]. For

l ∈ [0, vX
(
c−

)
) = [0, θβX), putting l′ =

l
θ

∈ [0, βX], we have
1−l′
1+l′ =

θ−l
θ+l , and by (a) and (b) in (ii) of Lemma 1, we also have(

1−βX

1+βX

)γ

=

(
1−mβX

1+mβX

)
and 1−ml

1+ml <
( 1−l
1+l

)γ
, which is equivalent to

the inequality θ−ml
θ+ml <

(
θ−l
θ+l

)γ
. By the definition of Cc,θ and CE, it

follows from (27) that Cc,θ (ml) <CE(Cc,θ (l)) = Cc,θ (Hintθ (l)). Because
Cc,θ is strictly decreasing in [0, θ ], we infer thatHintθ (l) <ml. Recall
that Hintθ (θβX) = Hintθ

(
vX

(
c−

))
= vY

(
very_c−

)
= θβ2

Y ; thus,

the last inequality results in Hintθ (l)
l < m =

β2
Y

βX
=

Hintθ (vX(c−))
vX(c−)

, for

all l ∈ (0, vX
(
c−

)
]. Because Hintθ (l)

l is continuous in [0, θ ], it follows
that maxl∈(0,vX(c−))

Hintθ (l)
l = m.
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From (b) of (ii) in Lemma 1, for γ = γ (βX, m), we infer that(
1−l′
1+l′

)γ

< 1−ml′
1+ml′ , where l′ =

l
θ

∈ [βX, 1]. By a similar argument

as above, for the case l′ =
l
θ

∈ [0, βX], we have Hintθ (l)
l > m =

β2
Y

βX
=

Hintθ (vX(c−))
vX(c−)

, for all l ∈ [θβX, θ ] = [vX
(
c−

)
, θ], and hence,

minl∈(vX(c−),θ )
Hintθ (l)

l = m.
As vX andHintθ are θ-symmetric functions, we can apply the θ-

symmetric rule Rθ to minl∈(vX(c+),1)
1−Hint

θ
(1−l)

1−l , in which Hintθ (l),
l, and the interval (vX

(
c+

)
, 1) are transformed respectively into

1 − Hintθ (1 − l), (1 – l), and (0, vX
(
c−

)
). Then, we obtain

min
l∈(vX(c+),1)

1 − Hintθ (1 − l)
1 − l

= max
l∈(0,vX(c−))

1 − (1 − Hintθ (1 − (1 − l)))
1 − (1 − l)

= max
l∈(0,vX(c−))

Hintθ (l)
l

= m

which is the desired equality. Because the proof of the remaining
equality is similar, the equalities in (ii) are completely proved. □

Appendix C. Proof of Theorem 2

(i) By the hypothesis of the theorem, m = ξ , and (a) of (ii)
of Lemma 1, we have γ = γ (β , ξ ) < m = ξ , where γ ∈ (0, 1).
Thus, for ∀t, γ ∈ (0, 1), the validity of the inequality in (i) is easily
deduced from the fact that γ < ξ t . For t = 0, the inequality is
deduced immediately from γ < 1 and Cc,θ (l) < 1. For t = 1,
also by (a) of (ii) in Lemma 1, we clearly infer that, for any ξ ∈ (0,
1], γ = ln

(
1+ξβ

1−ξβ

)
/ln

(
1+β

1−β

)
= ln

(
2

1−ξβ
− 1

)
/ln

(
1+β

1−β

)
, which

is increasing in ξ , and that γ < ξ . Obviously, CE =
(
Cc,θ (l)

)ξ is
decreasing in ξ , and hence, the inequality in (ii) holds.

(ii) Assume that l∈ [0,βfm(c−)]= [0,βθ ], which is the fuzziness
interval of c− = low, and put z =

l
θ

∈ [0, β]. By Cheng’s method, for
t ∈ [0, 1], we have

CICh(l) = C−1
c,θ (CECh(Cc,θ (l))) = C−1

c,θ

((
Cc,θ (l)

)ξ t
)

= θ
1 −

(
θ−l
θ+l

)ξ t

1 +
(

θ−l
θ+l

)ξ t
= θ

1 −
( 1−z
1+z

)ξ t

1 +
( 1−z
1+z

)ξ t

Because it is observed that the function f (z) =
1−z
1+z =

2
1+z − 1

is decreasing in (0, 1) and by (i) of Lemma 1
( 1−z
1+z

)ξ t
<

1−ξ t z
1+ξ t z ,

we have θ
1−

(
1−z
1+z

)ξ t

1+
(
1−z
1+z

)ξ t ≥ θ
1− 1−ξ t z

1+ξ t z

1+ 1−ξ t z
1+ξ t z

= θξ tz = ξ t l > ξ l = ml. For

l ∈ [0, βθ] = [0, vX
(
c−

)
], by (ii) of Theorem 1, it follows that

Hintθ (l) < CICh(l).
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